首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   6篇
  国内免费   9篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2019年   5篇
  2018年   4篇
  2016年   4篇
  2015年   11篇
  2014年   12篇
  2013年   19篇
  2012年   13篇
  2011年   12篇
  2010年   13篇
  2009年   10篇
  2008年   9篇
  2007年   15篇
  2006年   10篇
  2005年   11篇
  2004年   13篇
  2003年   9篇
  2002年   5篇
  2001年   2篇
  2000年   7篇
  1999年   7篇
  1998年   9篇
  1997年   11篇
  1996年   10篇
  1995年   10篇
  1994年   7篇
  1993年   12篇
  1992年   6篇
  1991年   11篇
  1990年   9篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1982年   1篇
  1981年   2篇
排序方式: 共有310条查询结果,搜索用时 31 毫秒
11.
Abstract: We studied the action of H2O2 on the exocytosis of glutamate by cerebrocortical synaptosomes. The treatment of synaptosomes with H2O2 (50–150 µ M ) for a few minutes results in a long-lasting depression of the Ca2+-dependent exocytosis of glutamate, induced by KCl or by the K+-channel inhibitor 4-aminopyridine. The energy state of synaptosomes, as judged by the level of phosphocreatine and the ATP/ADP ratio, was not affected by H2O2, although a transient decrease was observed after the treatment. H2O2 did not promote peroxidation, as judged by the formation of malondialdehyde. In indo-1-loaded synaptosomes, the treatment with H2O2 did not modify significantly the KCl-induced increase of [Ca2+]i. H2O2 inhibited exocytosis also when the latter was induced by increasing [Ca2+]i with the Ca2+ ionophore ionomycin. The effects of H2O2 were unchanged in the presence of superoxide dismutase and the presence of the Fe3+ chelator deferoxamine. These results appear to indicate that H2O2, apparently without damaging the synaptosomes, induces a long-lasting inhibition of the exocytosis of glutamate by acting directly on the exocytotic process.  相似文献   
12.
Abstract: We investigated the effect of the adenosine receptor agonist 5'-( N -ethylcarboxamido)adenosine (NECA) in catecholamine secretion from adrenal chromaffin cells that exhibit only the A2b subtype adenosine receptor. NECA reduced catecholamine release evoked by the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) in a time-dependent manner. Inhibition reached 25% after 30–40-min exposure to NECA. This effect on DMPP-evoked catecholamine secretion was mirrored by a similar (27.7 ± 3.3%), slowly developing inhibition of [Ca2+]i transients induced by DMPP that peaked at 30-min preincubation with NECA. The capacity of the chromaffin cells to buffer Ca2+ load was not affected by the treatment with NECA. Short-term treatment with NECA failed both to modify [Ca2+]i levels and to increase endogenous diacylglycerol production, showing that NECA does not activate the intracellular Ca2+/protein kinase C signaling pathway. The inhibitory effects of NECA were accompanied by a 30% increase of protein phosphatase activity in chromaffin cell cytosol. We suggest that dephosphorylation of a protein involved in DMPP-evoked Ca2+ influx pathway (e.g., L-type Ca2+ channels) could be the mechanism of the inhibitory action of adenosine receptor stimulation on catecholamine secretion from adrenal chromaffin cells.  相似文献   
13.
Ehrlich ascites tumor cells, loaded with 3H-labeled arachidonic acid and 14C-labeled stearic acid for two hours, were washed and transferred to either isotonic or hypotonic media containing BSA to scavenge the labeled fatty acids released from the cells. During the first two minutes of hypo-osmotic exposure the rate of 3H-labeled arachidonic acid release is 3.3 times higher than that observed at normal osmolality. Cell swelling also causes an increase in the production of 14C-stearic acid-labeled lysophosphatidylcholine. This indicates that a phospholipase A2 is activated by cell swelling in the Ehrlich cells. Within the same time frame there is no swelling-induced increase in 14C-labeled stearic acid release nor in the synthesis of phosphatidyl 14C-butanol in the presence of 14C-butanol. Furthermore, U7312, an inhibitor of phospholipase C, does not affect the swelling induced release of 14C-labeled arachidonic acid. Taken together these results exclude involvement of phospholipase A1, C and D in the swelling-induced liberation of arachidonic acid. The swelling-induced release of 3H-labeled arachidonic acid from Ehrlich cells as well as the volume regulatory response are inhibited after preincubation with GDPβS or with AACOCF3, an inhibitor of the 85 kDa, cytosolic phospholipase A2. Based on these results we propose that cell swelling activates a phospholipase A2—perhaps the cytosolic 85 kDa type—by a partly G-protein coupled process, and that this activation is essential for the subsequent volume regulatory response. Received: 23 July 1996/Revised: 17 June 1997  相似文献   
14.
Green plant cells can generate ATP in both chloroplasts and mitochondria. Hence the effect of photosynthesis on dark mitochondrial respiration can be considered at a variety of levels. Turnover of ceitric acid cycle dehydrogenases, which is essential for supply of carbon skeletons for amino acid synthesis, seems to be largely unaffected during photosynthesis. The source of carbon for the anaplerotic function of the citric acid cycle in light is however, not known with certainty. NADH generated in these reactions is probably not oxidised via the mitochondrial electron transfer chain coupled to ATP synthesis. However, it may be oxidised by the alternative cyanide-insensitive pathway, exported to the cytosol via the oxaloacetate-malate dicarboxylate shuttle or directly utilised for cytosolic nitrate reduction. Oxidation of succinate via cytochrome oxidase may also be similarly inhibited in light. Whether increase in the cytosolic ATP/ADP ratio in light is responsible for the inhibition of mitochondrial electron transfer to O2 is not clearly established, because the ATP/ADP ratio is reported to be already quite high in the dark. Effective collaboration between photophosphorylation and oxidative phosphorylation in order to maintain the cytosolic energy charge at a present high level is discussed.  相似文献   
15.
Various parameters of the rat pineal gland display a 24-h rhythm. However, nothing is known about possible 24-h variations in cyclic GMP (cGMP) metabolism. In the present study, 24-h variations in pineal gland cGMP accumulation were investigated by determining the increase in cGMP level with and without inhibitors of phosphodiesterase at different time points over a light/dark cycle (12/12 h). Furthermore, the activity of guanylate cyclase (GC) was determined under substrate-saturated conditions regarding the cytosolic and particulate forms of the enzyme. It has been found that cGMP accumulation and GC activity display biphasic 24-h variations with two peaks--one approximately 7 h after lights "on" and the other approximately 7 h after lights "off." The activity of cytosolic GC remains unchanged in the presence of the nitric oxide (NO) synthesis inhibitor N-monomethyl-L-arginine, indicating that 24-h variations in the activity do not reflect changes in the synthesis of the GC stimulator NO.  相似文献   
16.
A wasp venom, mastoparan, rapidly increased the cytosolic free Ca2+ concentration ([Ca2+]i) and activated phosphorylase in rat hepatocytes in a concentration-dependent manner. Mastoparan could increase [Ca2+]i even in the absence of extracellular Ca2+, but a larger increase was observed in the presence of extracellular Ca2+. Thus, mastoparan mobilized Ca2+ from intracellular and extracellular Ca2+ stores. It also activated inositol triphosphate (IP3) accumulation, but did not stimulate cAMP production. From these results, we conclude that mastoparan activates rat hepatic glycogenolysis mediated by the accumulation of IP3, which causes an increase of [Ca2+]i but not that mediated by cAMP.  相似文献   
17.
《Free radical research》2013,47(4-6):347-354
Exposure of hepatoma lclc7 cells to 2,3-drniethoxy-1.4-naphthoquinone (DMNQ) resulted in a sustained elevation of cytosolic Ca2+. DNA single strand breaks and cell killing. DNA single strand break formation was prevented when cells were preloaded with either of the intracellular Ca2+ chelators. Quin 2 or BAPTA, to buffer the increase in cytosolic Ca2+ concentration induced by the quinone. DMNQ caused marked NAD+ depletion which was prevented when cells were preincubated with 3-aminobenzamide. an inhibitor of nuclear poly-(ADP-ribose)-synthetase activity. or with either of the two Ca2+ chelators. However. 3-aminobenzamide did not protect the hepatoma cells from loss of viability. Our results indicate that quinone-induced DNA damage. NAD+ depletion and cell killing are mediated by a sustained elevation of cytosolic Ca2+  相似文献   
18.
19.
Dimethyl sulfoxide (DMSO) is a dipolar aprotic solvent widely used in biological assays. Here, we observed that DMSO enhanced the hypo-osmotically induced increases in the concentration of Ca2+ in cytosolic and nucleic compartments in the transgenic cell-lines of tobacco (BY-2) expressing aequorin.  相似文献   
20.
Cyanide-induced neurotoxicity is associated with altered cellular Ca2+ homeostasis resulting in sustained elevation of cytosolic Ca2+. In order to characterize the effect of cyanide on intracellular signaling mechanisms, the interaction of KCN with the inositol 1,4,5-triphosphate Ca2+ signaling system was determined in the PC12 cell line. KCN in the concentration range of 1.0–100 μM produced a rapid rise in intracellular IP3 levels (peak level occurred within 60 sec); 10 μM KCN elevated intracellular levels of IP3 to 148% of control levels. This response was mediated by phospholipase C (PLC) since U73122, a specific PLC inhibitor, blocked the response. Removal of Ca2+ from the incubation medium and chelation of intracellular Ca2+ with BAPTA partially attenuate the cyanide-stimulated IP3 generation, showing that the response is partially Ca2+ dependent. Also, treatment of cells with nifedipine or LaCl3, Ca2+ channel blockers, partially blocked the generation of IP3. This study shows that cyanide in concentrations as low as 1 μM stimulates IP3 generation that may be mediated by receptor and nonreceptor IP3 production since they have differential dependence on Ca2+. It is proposed that this response is an early intracellular signaling action that can contribute to altered Ca2+ homeostasis characteristic of cyanide neurotoxicity. © 1997 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号