首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   2篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2015年   1篇
  2014年   7篇
  2013年   11篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
81.
The type 1 ribosome inactivating protein from Momordica balsamina (MbRIP1) has been shown to interact with purine bases, adenine and guanine of RNA/DNA. We report here the binding and structural studies of MbRIP1 with a pyrimidine base, cytosine; cytosine containing nucleoside, cytidine; and cytosine containing nucleotide, cytidine diphosphate. All three compounds bound to MbRIP1 at the active site with dissociation constants of 10?4 M–10?7 M. As reported earlier, in the structure of native MbRIP1, there are 10 water molecules in the substrate binding site. Upon binding of cytosine to MbRIP1, four water molecules were dislodged from the substrate binding site while five water molecules were dislodged when cytidine bound to MbRIP1. Seven water molecules were dislocated when cytidine diphosphate bound to MbRIP1. This showed that cytidine diphosphate occupied a larger space in the substrate binding site enhancing the buried surface area thus making it a relatively better inhibitor of MbRIP1 as compared to cytosine and cytidine. The key residues involved in the recognition of cytosine, cytidine and cytidine diphosphate were Ile71, Glu85, Tyr111 and Arg163. The orientation of cytosine in the cleft is different from that of adenine or guanine indicating a notable difference in the modes of binding of purine and pyrimidine bases. Since adenine containing nucleosides/nucleotides are suitable substrates, the cytosine containing nucleosides/nucleotides may act as inhibitors.  相似文献   
82.
The major difficulty in Schwann cell (SC) purification is contamination by fibroblasts, which usually become the predominant cell type during SC enrichment in vitro. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. Our objectives have been to develop an efficient, easily applicable, rapid method to obtain highly purified SC from the sciatic nerve of newborn rats. The method involves two rounds of purification to eliminate fibroblasts with the novel combined use of cytosine-B-arabinoside hydrochloride (Ara-C) action and differential cell detachment. Cultured cells were first treated with Ara-C for 24 h. The medium was replaced with the growth medium containing 20 ng/ml human heregulin1-β1 extracellular domain (HRG1-β1 ECD). After another 48 h in culture, the cells were treated with 0.05% trypsin, following which SCs, but not fibroblasts, were easily detached from the dishes. The advantage of this method is that the two steps can eliminate the fibroblasts complementarily. Ara-C eliminates most of the fibroblasts growing among SCs, whereas the differential cell detachment technique removes the remainder growing under or interacting with the SC layer. A purity of more than 99% SCs has been obtained, as confirmed by cell morphology and immunostaining. The purified SCs have a spindle-shaped, bipolar, and sometimes tripolar morphology, align in fascicles, and express S-100. The whole procedure takes about 10 days from primary culture to the purified SCs growing to confluence (only half the time reported previously). This protocol provides an alternative method for investigating peripheral nerve regeneration and potentially could be used to produce enough SCs to construct artificial nerve scaffolds in vitro. This work was supported by Tsinghua-Yue-Yuen Medical Sciences Fund, the National Natural Science Foundation of China (contract grant numbers: 30670528, 30700848, 30772443), Beijing Municipal Science & Technology Commission (BMSTC, contract grant number: H060920050430), National Basic Research Program of China (also called the 973 Program, contract grant number: 2005CB623905), and the National Natural Science Foundation of Beijing (contract grant number: 7082090).  相似文献   
83.
The cleavage patterns of a subset of restriction enzymes are blocked or impaired when a methylated CpG is overlapped with either the 5' or 3' end of the canonical restriction site. BstZ17I restriction endonuclease is a blunt-end cutter, which recognises the hexanucleotide sequence GTA(downward arrow)TAC. In this report, I show that the BstZ17I restriction enzyme is sensitive to cytosine methylation. Using both in vitro-methylated episomal plasmids and lambdaDNA, I demonstrate that the BstZ17I restriction enzyme is sensitive to cytosine methylation that occurs 3' and/or 5' of the canonical recognition sequence.  相似文献   
84.
Summary Ultraviolet light (UV) induced mutations in the glnU and glnV utRNA genes in Escherichia coli are thought to be targeted by UV photoproducts. In a previous study with a uracil-DNA glycosylase deficient strain, UV-induced glnU oand glnV otRNA suppressor mutations became resistant to photoreactivation (PR) following thermal treatment. It was proposed that deamination of cytosine in the cytosine-containing cyclobutyl dimers at the sites of these suppressor mutations produced uracil residues in sequence upon PR. In the absence of glycosylase, the C U conversion yielded the requisite G:C A:T transitions. In the present study, this thermal resistance of UV-mutagenesis to PR is characterized. It is dependent on the initial UV-fluence and temperature of holding but not on the UmuC+ gene product. The data obtained yield an estimate of an activation energy of 17±3 kcal/mol for the deamination of cytosines contained in dimers. This compares to 29 kcal/mol for unaffected cytosines in DNA. In addition, an estimate of the probability of cyclobutyl dimer formation at the target sites for glnU oand glnV osuppressor mutations indicate that these lesions can not entirely account for the mutation frequencies recovered in the absence of PR. This is interpreted as an indication that, in addition to thyminecytosine cyclobutyl dimers, other UV-induced lesions, possibly Thy(6-4)Cyt photoproducts, may also target glnU oand glnV osuppressor mutations.  相似文献   
85.
Escherichia coli contains a base mismatch correction system called VSP repair that is known to correct T:G mismatches to C:G when they occur in certain sequence contexts. The preferred sequence context for this process is the site for methylation by the E. coli DNA cytosine methylase (Dcm). For this reason, VSP repair is thought to counteract potential mutagenic effects of deamination of 5-methylcytosine to thymine. We have developed a genetic reversion assay that quantitates the frequency of C to T mutations at Dcm sites and the removal of such mutations by DNA repair processes. Using this assay, we have studied the repair of U: G mismatches in DNA to C: G and have found that VSP repair is capable of correcting these mismatches. Although VSP repair substantially affects the reversion frequency, it may not be as efficient at correcting U: G mismatches as the uracil DNA glycosylase-mediated repair process.  相似文献   
86.
Summary Repeat-induced point mutation (RIP) has been used to generate new mutations in the previously uncharacterised gene for malate synthase in Neurospora crassa. Molecular clones carrying the am (NADP-glutamate dehydrogenase) gene and the malate synthase gene from either N. crassa or Aspergillus nidulans have been introduced into Neurospora as ectopic duplicate copies by transformation, selecting for the am function in a deletion host. A number of meiotic progeny derived from these transformants were unable to use acetate as sole carbon source, yielded no detectable malate synthase activity and demonstrated extensive cytosine methylation of their duplicated sequences. The new locus has been designated acu-9 and has been assigned to linkage group VII.  相似文献   
87.
Summary The base proton (purine H8 and pyrimidine H6) resonances are key signals for the assignment of the proton resonances of DNA oligomers. They are classified into two groups, i.e., cytosine H6 signals, observed as doublets, and the other base proton signals, observed as singlets. Here we propose some experiments for distinguishing the cytosine H6 signals from the other base proton signals. Moreover, the ability of signal selection and the sensitivity as to signal detection were compared for all experiments, and the optimum conditions for spectral measurements were surveyed. Some of the experiments were employed as the NOESY detection pulse. Previously proposed experiments, such as HOENOE and HAL, were also used in the comparison.  相似文献   
88.
Deoxycytidine nucleoside analogs must be first phosphorylated to become active anticancer drugs. The rate-limiting enzyme in this pathway is deoxycytidine kinase (dCK). Cells deficient in this enzyme are resistant to these analogs. To evaluate the potential of dCK to be used as suicide gene for deoxycytidine nucleoside analogs, we transduced both human A-549 lung carcinoma and murine NIH3T3 fibroblast cell lines with this gene. The dCK-transduced cells showed an increase in cytotoxicity to the analogs, cytosine arabinoside (ARA-C), and 5-aza-2'-deoxycytidine (5-AZA-CdR). Unexpectedly, the related analog, 2',2'-difluorodeoxycytidine (dFdC), was less cytotoxic to the dCK-transduced cells than the wild-type cells. For the A-549-dCK cells, the phosphorylation of dFdC by dCK was much greater than control cells. In accord with the elevated enzyme activity, we observed a 6-fold increased dFdC incorporation into DNA and a more pronounced inhibition of DNA synthesis in the A-549-dCK cells. In an attempt to clarify the mechanism of dFdC, we investigated its action on A549 and 3T3 cells transduced with both cytidine deaminase (CD) and dCK. We reported previously that overexpression of CD confers drug resistance to deoxycytidine analogs. In this study, when the CD-transduced cells were also transduced with dCK they became relatively more sensitive to dFdC. In addition, we observed that dFdU, the deaminated form of dFdC, was cytotoxic to the A-549-dCK cells, but not the wild-type cells. Our working hypothesis to explain these results is that the mitochondrial thymidine kinase (TK2), an enzyme reported to phosphorylate dFdC, acts as an important modulator of dFdC-induced cell toxicity. These findings may further clarify the action of dFdC and the mechanism by which it induces cell death.  相似文献   
89.
Activation of astrocytes occurs during many forms of CNS injury, but its importance for neuronal survival is poorly understood. When hippocampal cultures of neurons and astrocytes were treated from day 2–4 in vitro (DIV 2–4) with 1 μM cytosine arabinofuranoside (AraC), we observed a stellation of astrocytes, an increase in glial fibrillary acidic protein (GFAP) level as well as a higher susceptibility of the neurons to glutamate compared with cultures treated from DIV 2–4 with vehicle. To find out whether factors released into the culture medium were responsible for the observed differences in glutamate neurotoxicity, conditioned medium of AraC-treated cultures (MCMAraC) was added to vehicle-treated cultures and conditioned medium of vehicle-treated cultures (MCMvh) was added to AraC-treated cultures 2 h before and up to 18 h after the exposure to 1 mM glutamate for 1 h. MCMAraC increased glutamate neurotoxicity in vehicle-treated cultures and MCMvh reduced glutamate neurotoxicity in AraC-treated cultures. Heat-inactivation of MCMvh increased, whereas heat-inactivation of MCMAraC did not affect glutamate toxicity suggesting that heat-inactivation changed the proportion of factors in MCMvh inhibiting and exacerbating the excitotoxic injury. Similar findings were obtained using conditioned medium of pure astrocyte cultures of DIV 12 treated from DIV 2–4 with vehicle or 1 μM AraC suggesting that heat-sensitive factors in MCMvh were mainly derived from astrocytes. Treatment of hippocampal cultures with 1 mM dibutyryl-cAMP for 3 days induced an activation of the astrocytes similar to AraC and increased neuronal susceptibility to glutamate. Our findings provide evidence that activation of astrocytes impairs their ability to protect neurons after excitotoxic injury due to changes in the release of soluble and heat-sensitive factors.  相似文献   
90.
A wide difference in the susceptibility to undergo in vitro apoptosis exists among individuals, and this fact has potential implications in predicting the in vivo response to apoptotic agents, such as those employed in chemotherapy. In this report, we addressed the question whether the natural variability at p53 locus (the proline-arginine substitution at codon 72) affects the capacity of peripheral-blood mononuclear cells from healthy subjects to undergo in vitro apoptosis in response to the cytotoxic drug cytosine arabinoside. We found that cells from subjects carrying the arginine/arginine genotype undergo in vitro apoptosis at a higher extent in comparison to those from arginine/proline subjects. This finding suggests that naturally occurring genetic variability at p53 gene explains part of the inter-individual difference in the in vitro susceptibility to a chemotherapeutic drug, thus resulting as an eligible predictor marker of in vivo response to chemotherapy and its adverse effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号