首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   8篇
  国内免费   5篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   10篇
  2018年   6篇
  2017年   2篇
  2016年   10篇
  2015年   5篇
  2014年   14篇
  2013年   15篇
  2012年   11篇
  2011年   5篇
  2010年   17篇
  2009年   30篇
  2008年   37篇
  2007年   38篇
  2006年   22篇
  2005年   21篇
  2004年   20篇
  2003年   23篇
  2002年   14篇
  2001年   10篇
  2000年   17篇
  1999年   9篇
  1998年   13篇
  1997年   9篇
  1996年   20篇
  1995年   10篇
  1994年   13篇
  1993年   13篇
  1992年   8篇
  1991年   10篇
  1990年   10篇
  1989年   11篇
  1988年   10篇
  1987年   10篇
  1986年   10篇
  1985年   9篇
  1984年   11篇
  1983年   3篇
  1982年   16篇
  1981年   20篇
  1980年   13篇
  1979年   9篇
  1978年   10篇
  1977年   10篇
  1973年   1篇
  1972年   1篇
排序方式: 共有598条查询结果,搜索用时 15 毫秒
151.
A multistep two-component signaling system is established as a key element of cytokinin signaling in Arabidopsis. Here, we provide evidence for a function of the two-component signaling system in cold stress response in Arabidopsis. Cold significantly induced the expression of a subset of A-type ARR genes and of GUS in ProARR7:GUS transgenic Arabidopsis. AHK2 and AHK3 were found to be primarily involved in mediating cold to express A-type ARRs despite cytokinin deficiency. Cold neither significantly induced AHK2 and AHK3 expression nor altered the cytokinin contents of wild type within the 4 h during which the A-type ARR genes exhibited peak expression in response to cold, indicating that cold might induce ARR expression via the AHK2 and AHK3 proteins without alterations in cytokinin levels. The ahk2 ahk3 and ahk3 ahk4 mutants exhibited enhanced freezing tolerance compared with wild type. These ahk double mutants acclimated as efficiently to cold as did wild type. The overexpression of the cold-inducible ARR7 in Arabidopsis resulted in a hypersensitivity response to freezing temperatures under cold-acclimated conditions. The expression of C-repeat/dehydration-responsive element target genes was not affected by ARR7 overexpression as well as in ahk double mutants. By contrast, the arr7 mutants showed increased freezing tolerance. The ahk2 ahk3 and arr7 mutants showed hypersensitive response to abscisic acid (ABA) for germination, whereas ARR7 overexpression lines exhibited insensitive response to ABA. These results suggest that AHK2 and AHK3 and the cold-inducible A-type ARRs play a negative regulatory role in cold stress signaling via inhibition of ABA response, occurring independently of the cold acclimation pathway.  相似文献   
152.
It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-d-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the nucleus basalis has not yet been investigated. Here, by means of choline acetyl transferase and NR2B or NR2C double staining, we demonstrate that mice express both the NR2C and NR2B subunits in nucleus basalis cholinergic cells. We generated NR2C-2B mutant mice in which an insertion of NR2B cDNA into the gene locus of the NR2C gene replaced NR2C by NR2B expression throughout the brain. This NR2C-2B mutant was used to examine whether a subunit exchange in cholinergic neurons would affect acetylcholine (ACh) content in several brain structures. We found increased ACh levels in the frontal cortex and amygdala in the brains of NR2C-2B mutant mice. Brain ACh has been implicated in neuroplasticity, novelty-induced arousal and encoding of novel stimuli. We therefore assessed behavioral habituation to novel environments and objects as well as object recognition in NR2C-2B subunit exchange mice. The behavioral analysis did not indicate any gross behavioral alteration in the mutant mice compared with the wildtype mice. Our results show that the NR2C by NR2B subunit exchange in mice affects ACh content in two target areas of the nucleus basalis.  相似文献   
153.
Role of cytokinin in the regulation of root gravitropism   总被引:9,自引:0,他引:9  
Aloni R  Langhans M  Aloni E  Ullrich CI 《Planta》2004,220(1):177-182
The models explaining root gravitropism propose that the growth response of plants to gravity is regulated by asymmetric distribution of auxin (indole-3-acetic acid, IAA). Since cytokinin has a negative regulatory role in root growth, we suspected that it might function as an inhibitor of tropic root elongation during gravity response. Therefore, we examined the free-bioactive-cytokinin-dependent ARR5::GUS expression pattern in root tips of transformants of Arabidopsis thaliana (L.) Heynh., visualized high cytokinin concentrations in the root cap with specific monoclonal antibodies, and complemented the analyses by external application of cytokinin. Our findings show that mainly the statocytes of the cap produce cytokinin, which may contribute to the regulation of root gravitropism. The homogenous symmetric expression of the cytokinin-responsive promoter in vertical root caps rapidly changed within less than 30 min of gravistimulation into an asymmetrical activation pattern, visualized as a lateral, distinctly stained, concentrated spot on the new lower root side of the cap cells. This asymmetric cytokinin distribution obviously caused initiation of a downward curvature near the root apex during the early rapid phase of gravity response, by inhibiting elongation at the lower side and promoting growth at the upper side of the distal elongation zone closely behind the root cap. Exogenous cytokinin applied to vertical roots induced root bending towards the application site, confirming the suspected inhibitory effect of cytokinin in root gravitropism. Our results suggest that the early root graviresponse is controlled by cytokinin. We conclude that both cytokinin and auxin are key hormones that regulate root gravitropism.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00425-004-1381-8  相似文献   
154.
Following uptake of [(3)H]zeatin riboside and [(3)H]dihydrozeatin riboside by girdled lupin (Lupinus angustifolius L.) stems via the transpiration stream, rapid lateral movement of the radioactivity from xylem to bark was observed. Short-term studies with intact stems, and other studies with excised stem tissues, revealed that the ribosides and/or the corresponding nucleotides were the cytokinin forms which actually moved into the bark tissues. Relative to cytokinin metabolism in xylem plus pith, metabolism in bark was both more rapid and more complex. Riboside cleavage and formation of the O-acetylzeatin and O-acetyldihydrozeatin ribosides and nucleotides were almost completely confined to bark tissues. Exogenous (3)H-labelled O-acetylzeatin riboside was converted to zeatin riboside in bark tissue, but the presence of the acetyl group suppressed degradation to adenine metabolites. The sequestration and modification of xylem cytokinins by stem tissues probably contributes significantly to the cytokinin status of the shoot. New cytokinins identified by mass spectrometry in lupin were: O-acetyldihydrozeatin 9-riboside, a metabolite of exogenous dihydrozeatin riboside in stem bark; O-methylzeatin nucleotide and O-methyldihydrozeatin 9-riboside, metabolites of endogenous cytokinins in stem bark; O-methylzeatin nucleotide and O-methylzeatin 9-riboside, metabolites of exogenous zeatin riboside in excised pod walls.  相似文献   
155.
The mechanisms of reception/transduction of cytokinins still remain largely unknown. We used 1‐(2‐azido‐6‐chloropyrid‐4‐yl)‐3‐(4‐[3H])phenylurea ([3H]azido‐CPPU), a new photoaffinity probe to search for cytokinin‐binding proteins. A soluble protein that binds phenylurea‐type cytokinins has been specifically photolabeled in Nicotiana plumbaginifolia (cv. Viviani line pbH1D) leaf extracts. The protein was purified to homogeneity by affinity chromatography. Its N‐terminal amino acid sequence, as well as four internal peptidic sequences are highly homologous with the theta class of the glutathione S‐transferase superfamily (GST, EC 2.5.1.18) including Hyoscyamus muticus and Arabidopsis GSTs identified as auxin‐binding proteins. The purified N. plumbaginifolia protein also possesses GST enzymatic activity. To test the possible involvement of this GST in the mechanism of action of cytokinin, we studied the binding of tritiated‐CPPU to the purified GST in the presence of various compounds, cytokinin agonists, cytokinin antagonists, or inactive molecules. Thidiazuron is a poor competitor, and neither zeatin nor the active optical isomer R‐MeBA is able to inhibit the binding of CPPU. There is no correlation between the cytokinin activity and the binding properties of the molecules tested. Our results confirmed that plant GSTs bind different compounds, especially plant hormones but probably have no specific role in the mode of action of cytokinins.  相似文献   
156.
Development of Physcomitrella patens (Hedw.) B.S.G. starts with a filamentous protonema growing by apical cell division. As a developmental switch, some subapical cells produce three-faced apical cells, the so-called buds, which grow to form leafy shoots, the gametophores. Application of cytokinins enhances bud formation but no subsequent gametophore development in several mosses. We used the ipt gene of Agrobacterium tumefaciens, encoding a protein which catalyzes the rate-limiting step in cytokinin biosynthesis, to transform two developmental Physcomitrella mutants. One mutant (P24) was defective in budding (bud) and thus did not produce three-faced cells, while the other one (PC22) was a double mutant, defective in plastid division (pdi), thus possessing at the most one giant chloroplast per cell, and in gametophore development (gad), resulting in malformed buds which could not differentiate into leafy gametophores. Expression of the ipt gene rescued the mutations in budding and in plastid division but not the one in gametophore development. By mutant rescue we provide evidence for a distinct physiological difference between externally applied and internally produced cytokinins. Levels of immunoreactive cytokinins and indole-3-acetic acid were determined in tissues and in culture media of the wild-type moss, both mutants and four of their stable ipt transformants. Isopentenyl-type cytokinins were the most abundant cytokinins in Physcomitrella, whereas zeatin-type cytokinins, the major native cytokinins of higher plants, were not detectable. Cytokinin as well as auxin levels were enhanced in ipt transgenics, demonstrating a cross-talk between both metabolic pathways. In all genotypes, most of the cytokinin and auxin was found extracellularly. These extracellular pools may be involved in hormone transport in the non-vascular mosses. We suggest that both mutants are defective in signal-transduction rather than in cytokinin metabolism. Received: 24 October 1997 / Accepted: 20 March 1998  相似文献   
157.
158.
159.
The optimal assay conditions and the trend with time in culture (28 days) of arginine decarboxylase (ADE; EC 4.1.1.19), omithine decarboxylase (ODC; EC 4.1.1.17) and diamine oxidase (DAO; EC 1.4.3.6) activities in habituated (H) and normal (N) auxin- and cytokinin-requiring sugar beet callus were compared. Although the response to variations in buffer pH and EDTA and pyridoxal phosphate (PLP) concentrations varied for ADC and ODC activities between the two callus types, pH 8.3, 50 μ M PLP and 5 m M EDTA were generally optimal or near-optimal for both H and N callus. In most cases the addition of ornithine or arginine in the ADC and ODC assays, respectively, given to block the interconversion between the two substrates, resulted in lower 14CO2 recovery. DAO activity was very differently affected in H and N callus by the presence of polyvinylpyrrolidone in the extration buffer. However, in both cases, this activity increased with time in culure. ADC activity was always predominant in both cell lines and always higher in N callus. In the latter, ADC activity rose sharply between days 14 and 21 and then leveled off while in H callus it incresed steadily from day 14 onwards. ODC activity was also higher in N callus and peaked sharply on day 21 while in H callus it was not detectable in the second half of the culture period. In both cell lines this activity was low or nil on day 28. 3,4-[14C]-methionine incorporation into ethylene and polyamines was also compared in N and H callus. In the latter, ethylene synthesis was lower and [14C]-spermidine formation higher than in N callus. This is in accord with the significantly higher spermidine titres found in H callus.  相似文献   
160.
外源细胞分裂素对增强烟草培养细胞抗寒能力作用的研究   总被引:1,自引:0,他引:1  
陈建南CHEN  Jian-Nan 《遗传》1993,15(6):24-27
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号