首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10052篇
  免费   461篇
  国内免费   308篇
  2023年   52篇
  2022年   104篇
  2021年   108篇
  2020年   149篇
  2019年   196篇
  2018年   229篇
  2017年   165篇
  2016年   183篇
  2015年   207篇
  2014年   437篇
  2013年   693篇
  2012年   332篇
  2011年   518篇
  2010年   369篇
  2009年   449篇
  2008年   525篇
  2007年   594篇
  2006年   517篇
  2005年   467篇
  2004年   453篇
  2003年   438篇
  2002年   323篇
  2001年   204篇
  2000年   170篇
  1999年   203篇
  1998年   212篇
  1997年   185篇
  1996年   152篇
  1995年   219篇
  1994年   171篇
  1993年   162篇
  1992年   155篇
  1991年   118篇
  1990年   112篇
  1989年   98篇
  1988年   113篇
  1987年   111篇
  1986年   102篇
  1985年   123篇
  1984年   142篇
  1983年   77篇
  1982年   100篇
  1981年   78篇
  1980年   104篇
  1979年   61篇
  1978年   33篇
  1977年   23篇
  1976年   28篇
  1975年   22篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The internally transcribed spacer (ITS) sequences of 21 Arthrospira clonal strains from four continents and assigned to four different species (A. platensis, A. maxima, A. fusiformis, A. indica) in the culture collections were determined. Two main clusters, I and II, were differentiated by 49 positions out of 475 nt or 477 nt, respectively. Each cluster was further subdivided into two subclusters. Subclusters I.A and I.B were separated by two substitutions, whereas subclusters II.A and II.B were distinguished by four substitutions. After direct sequencing of the PCR products, three dried samples from Chad aged between 3 months and 35 years yielded a sequence belonging to subcluster I.A, as did a recent commercial product. The strains grown in production plants belonged to the same (sub)clusters as strains from culture collections, mainly I.A and II. PCR primers specific for each cluster and subcluster were designed and tested with crude cell lysates of Arthrospira strains. One dried sample (“dihé” 1) and a herbarium sample from Lake Sonachi (Kenya) only contained I.A sequences, whereas the commercial product was a mixture of the four genotypes and the other two dried samples contained minor polymorphisms characteristic of different clusters. Five clonal Arthrospira strains, thought to be duplicates, showed the simultaneous presence of the two forms of the four diagnostic positions that distinguish subclusters genotype II.A and genotype II.B. This is likely to be caused by multiple copies of the rDNA operon, in a intermediate stage of homogenization between subcluster II.A and subcluster II.B. The high conservation of ITS sequences is in contrast with the assignment to four different species, the great morphological variability of the strains, and their wide geographic distribution.  相似文献   
992.
The role that the constituents of the ascorbate–glutathione cycle play in the mechanism of contrasting ozone sensitivities was examined in mature and old tobacco leaves after acute ozone-fumigation (150 p.p.b., 5 h). Levels of the enzyme activities associated with the detoxifying system were lower in ozone-sensitive Bel W3 control plants than in unfumigated ozone-tolerant Bel B plants. In particular, the endogenous activities of ascorbate peroxidase (APX) and glutathione reductase (GR), and the metabolites ascorbic acid (AA) and reduced glutathione (GSH) were more abundant in Bel B than Bel W3 control plants. These results suggest that the higher tolerance of Bel B to O3 is associated with a greater initial content of the antioxidant enzymes or metabolites. Only in the mature leaves of the ozone-tolerant Bel B cv. did fumigation trigger activation of APX and, weakly, of dehydroascorbate reductase (DHAR). The activity of these enzymes was significantly lower after ozone treatment in both mature and old leaves of Bel W3 than in control plants. Fumigation had little effect on the ascorbate content. Its main effects on the glutathione pool were that it boosted the oxidized form and lowered the reduced form, particularly in mature Bel W3 leaves. Extractable GR activity remained unchanged in both Bel B and Bel W3 immediately after fumigation, but increased slightly 24 h later, particularly in mature leaves of Bel W3. Exposure to O3 caused a sharp decline in chloroplastic GR mRNA levels in both cultivars. However, as Western blot analysis failed to detect any major changes in GR protein content at this time, the protein must be highly stable. There is therefore a good correlation between tolerance to O3 and high endogenous levels of antioxidant metabolites such as AA and GSH in tobacco. In addition, the degree of inducibility of the system discriminates the two cultivars investigated.  相似文献   
993.
Foliar application of benzyladenine (BA) has been shown to enhance nitrate-dependent induction of nitrate reductase (NR; EC 1.6.6.1) in etiolated wheat ( Triticum aestivum L.) seedlings. Whether similar enhancement occurs in light-grown plants, or whether endogenous cytokinin content affects this enhancement is unknown. Since the cytokinin content of etiolated plants probably differs from that of light-grown seedlings, the NR response of each to exogenous root- or shoot-applied BA in wheat (cv. Red Bob) was examined. Endogenous cytokinins present in untreated control tissues prior to BA application and changes that occurred after a 22 h (12 h dark followed by 10 h of light) period were determined using a combined HPLC-immunoassay method. Shoot application of BA enhanced the induction of NR in etiolated seedlings in a concentration-dependent manner but failed to enhance NR induction in light-grown plants. Root-applied BA enhanced NR induction in both etiolated and light-grown seedlings. Endogenous root cytokinin levels were similar in both etiolated and light-grown plants. In contrast, shoots of 6 day-old light-grown seedlings contained at least 20 times the amount of total cytokinins measured in shoots from etiolated plants of the same age. Total cytokinin content of the light-grown plants diminished after the 22-h period while that measured in etiolated seedlings increased. The responsiveness of seedlings to BA was correlated with endogenous cytokinin levels in that enhancement of NR induction by exogenous BA was low in tissues which contained high concentrations of cytokinin at the time of BA application. These results may prove useful in interpretation of gene responses to exogenous plant growth regulators.  相似文献   
994.
The initial activity of wheat leaf nitrate reductase was depressed on inclusion of the following thiol compounds; dithiothreitol, dithioerythreitol or mercaptoethanol, but not cysteine and glutathione. This thiol effect simply resulted from an interference with the chemical determination of nitrite. Preincubation of the enzyme with NAD+ and these thiols enhanced the inhibition of nitrate reductase activity. This effect was mediated by NADH production by the thiol reduction of NAD+. The inactivation by NAD+ in the presence of thiol compounds which was enhanced by cyanide ions could be reversed by ferricyanide, as has been observed previously for NADH-mediated inactivation of nitrate reductase.  相似文献   
995.
Using “P nuclear magnetic resonance analysis, total inorganic polyphosphate in algae could be quantitatively estimated, For this purpose the algal suspension, which had been kept in cold trichloroacetic acid, was further treated with 6 mM EDTA, or the cells were kept in 2 N KOH containing 100 mM EDTA for 18 h at 37°C. These simple methods avoid hydrolysis of cellular inorganic polyphosphate and, therefore, are useful for the study of phosphorus metabolism in algae. The effects of these treatments on visualization of the signal for inorganic polyphosphate in nuclear magnetic resonance spectra were discussed in comparison with in vivo, ‘P nuclear magnetic resonance spectra of algae.  相似文献   
996.
The utilization and translocation of nitrogen was investigated in exponentially growing, nitrogen-limited Pisum sativum L. cv. Marma. The plants were given N daily at exponentially increasing, although suboptimal, relative nitrogen addition rates (RN) calculated to yield a relative increment in N of 0.06 day?1 and 0.12 day?1. After 10 days of NO?3 additions (26 days after sowing), the relative growth rate more or less equaled RN. Uptake of NO?3 was several-fold higher than the N requirement for the growth rate set by RN. The daily addition of NO?3 was taken up after 7 to 8 h, resulting in a cyclic behaviour in the NO?3 utilization. During the phase of net NO?3 influx, the filling phase (0 to 8 h), in vitro nitrate reductase activity (NR activity) and intracellular levels of soluble N in the root increased. In the phase of no net influx of NO?3 the depletion phase (8 to 24 h), the plants were entirely dependent on stored N. During this phase both in vitro NR activity and intracellular levels of soluble N decreased. Also the calculated actual rate of NO?3 reduction was high in the filling phase, while it was close to zero in the depletion phase. The pattern of these fluctuations indicates that the regulation of NO?3 utilization involves an interplay between transmembrane fluxes of NO?3, the cytosolic NO?3 concentration and NR activity. Cyclic fluctuations in N-containing compounds were also found in the xylem. Nitrogen was mainly transported as amino acids. The pattern of NO?3 transport in the xylem and the fluctuations in the shoot of in vitro NR activity indicate that a reasoning similar to that for the regulation of NO?3 assimilation in the root also applies for the shoot. The results also indicate a substantial supply of amino acids to the xylem through recirculation from the shoot.  相似文献   
997.
A denitrifying phototroph, Rhodobacter sphaeroides f. sp. denitrificans, has the ability to denitrify by respiring nitrate. The periplasmic respiratory nitrate reductase (Nap) catalyses the first step in denitrification and is encoded by the genes, napKEFDABC. By assaying the ss-galactosidase activity of napKEFD-lacZ fusions in wild type and nap mutant cells grown under various growth conditions, the environmental signal for inducing nap expression was examined. Under anoxic conditions with nitrate, nap genes expression in the wild-type strain was highest in the dark, and somewhat lowered by incident light, but that of the napA, napB, and napC mutant strains was low, showing that nap expression is dependent on nitrate respiration. Under oxic conditions, both the wild type and nap mutant cells showed high ss-galactosidase activities, comparable to the wild-type grown under anoxic conditions with nitrate. Myxothiazol, a specific inhibitor of the cytochrome bc (1) complex, did not affect the beta-galactosidase activity in the wild-type cells grown aerobically, suggesting that the redox state of the quinone pool was not a candidate for the activation signal for aerobic nap expression. These results suggested that the trans-acting regulatory signals for nap expression differ between anoxic and oxic conditions. Deletion analysis showed that the nucleotide sequence from -135 to -88 with respect to the translational start point is essential for nap expression either under anoxic or oxic conditions, suggesting that the same cis-acting element is involved in regulating nap expression under either anoxic with nitrate or oxic conditions.  相似文献   
998.
BACKGROUND AND AIMS: Photorespiration occurs in C4 plants, although rates are small compared with C3 plants. The amount of glycine decarboxylase in the bundle sheath (BS) varies among C4 grasses and is positively correlated with the granal index (ratio of the length of appressed thylakoid membranes to the total length of all thylakoid membranes) of the BS chloroplasts: C4 grasses with high granal index contained more glycine decarboxylase per unit leaf area than those with low granal index, probably reflecting the differences in O2 production from photosystem II and the potential photorespiratory capacity. Thus, it is hypothesized that the activities of peroxisomal enzymes involved in photorespiration are also correlated with the granal development. METHODS: The granal development in BS chloroplasts was investigated and activities of the photorespiratory enzymes assayed in 28 C4 grasses and seven C3 grasses. KEY RESULTS: The NADP-malic enzyme grasses were divided into two groups: one with low granal index and the other with relatively high granal index in the BS chloroplasts. Both the NAD-malic enzyme and phosphoenolpyruvate carboxykinase grasses had high granal index in the BS chloroplasts. No statistically significant differences were found in activity of hydroxypyruvate reductase between the C3 and C4 grasses, or between the C4 subtypes. The activity of glycolate oxidase and catalase were smaller in the C4 grasses than in the C3 grasses. Among the C4 subtypes, glycolate oxidase activities were significantly smaller in the NADP-malic enzyme grasses with low granal index in the BS chloroplasts, compared with in the C4 grasses with substantial grana in the BS chloroplasts. CONCLUSIONS: There is interspecies variation in glycolate oxidase activity associated with the granal development in the BS chloroplasts and the O2 production from photosystem II, which suggests different potential photorespiration capacities among C4 grasses.  相似文献   
999.
The role of molybdenum in agricultural plant production   总被引:12,自引:0,他引:12  
BACKGROUND: The importance of molybdenum for plant growth is disproportionate with respect to the absolute amounts required by most plants. Apart from Cu, Mo is the least abundant essential micronutrient found in most plant tissues and is often set as the base from which all other nutrients are compared and measured. Molybdenum is utilized by selected enzymes to carry out redox reactions. Enzymes that require molybdenum for activity include nitrate reductase, xanthine dehydrogenase, aldehyde oxidase and sulfite oxidase. SCOPE: Loss of Mo-dependent enzyme activity (directly or indirectly through low internal molybdenum levels) impacts upon plant development, in particular, those processes involving nitrogen metabolism and the synthesis of the phytohormones abscisic acid and indole-3 butyric acid. Currently, there is little information on how plants access molybdate from the soil solution and redistribute it within the plant. In this review, the role of molybdenum in plants is discussed, focusing on its current constraints in some agricultural situations and where increased molybdenum nutrition may aid in agricultural plant development and yields. CONCLUSIONS: Molybdenum deficiencies are considered rare in most agricultural cropping areas; however, the phenotype is often misdiagnosed and attributed to other downstream effects associated with its role in various enzymatic redox reactions. Molybdenum fertilization through foliar sprays can effectively supplement internal molybdenum deficiencies and rescue the activity of molybdoenzymes. The current understanding on how plants access molybdate from the soil solution or later redistribute it once in the plant is still unclear; however, plants have similar physiological molybdenum transport phenotypes to those found in prokaryotic systems. Thus, careful analysis of existing prokaryotic molybdate transport mechanisms, as well as a re-examination of know anion transport mechanisms present in plants, will help to resolve how this important trace element is accumulated.  相似文献   
1000.
The influence of near null magnetic field on in vitro growth of different cultures of potato and related Solanum species was investigated for various exposure times and dates. Potato (Solanum tuberosum L. cv. Désirée) in vitro cultures of shoot tips or nodal segments were used. Three different exposure periods revealed either stimulation or inhibition of root, stem, or leaf in vitro growth after 14 or 28 days of exposure. In one experiment the significant stimulation of leaf growth was also demonstrated at biochemical level, the quantity of chlorophyll a and b and carotenoids increasing more than two-fold. For the wild species Solanum chacoense, S. microdontum, and S. verrucosum, standardized in vitro cultures of nodal stem segments were used. Root and stem growth was either stimulated or slightly inhibited after 9 days exposure to near null magnetic field. Callus cultures obtained from potato dihaploid line 120/19 were maintained in near null magnetic field in 2 different months. For these experiments as well as for Solanum verrucosum, callus cultures recorded either slight inhibition or no effect on fresh weight. For all experiments significant growth variation was brought about only when geomagnetic activity (AP index) showed variations at the beginning of in vitro growth and when the explant had at least one meristematic tissue. Moreover longer maintenance in near null magnetic field, 28 days as compared to 14 days or the controls, can also make a difference in plant growth in response to geomagnetic field variations when static component was reduced to zero value. These results of in vitro plant growth stimulation by variable component of geomagnetic field also sustain the so-called seasonal "window" effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号