全文获取类型
收费全文 | 2185篇 |
免费 | 161篇 |
国内免费 | 148篇 |
专业分类
2494篇 |
出版年
2024年 | 1篇 |
2023年 | 14篇 |
2022年 | 19篇 |
2021年 | 16篇 |
2020年 | 49篇 |
2019年 | 34篇 |
2018年 | 53篇 |
2017年 | 32篇 |
2016年 | 48篇 |
2015年 | 52篇 |
2014年 | 68篇 |
2013年 | 67篇 |
2012年 | 36篇 |
2011年 | 75篇 |
2010年 | 74篇 |
2009年 | 93篇 |
2008年 | 131篇 |
2007年 | 134篇 |
2006年 | 138篇 |
2005年 | 114篇 |
2004年 | 108篇 |
2003年 | 96篇 |
2002年 | 82篇 |
2001年 | 83篇 |
2000年 | 83篇 |
1999年 | 79篇 |
1998年 | 66篇 |
1997年 | 86篇 |
1996年 | 55篇 |
1995年 | 48篇 |
1994年 | 41篇 |
1993年 | 59篇 |
1992年 | 47篇 |
1991年 | 37篇 |
1990年 | 39篇 |
1989年 | 31篇 |
1988年 | 32篇 |
1987年 | 31篇 |
1986年 | 36篇 |
1985年 | 23篇 |
1984年 | 27篇 |
1983年 | 16篇 |
1982年 | 12篇 |
1981年 | 9篇 |
1980年 | 11篇 |
1979年 | 5篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有2494条查询结果,搜索用时 15 毫秒
81.
Aquaporins and plant water balance 总被引:4,自引:0,他引:4
Kaldenhoff R Ribas-Carbo M Sans JF Lovisolo C Heckwolf M Uehlein N 《Plant, cell & environment》2008,31(5):658-666
The impact of aquaporin function on plant water balance is discussed. The significance of these proteins for root water uptake, water conductance in the xylem, including embolism refilling and the role of plant aquaporins in leaf physiology, is described. Emphasis is placed on certain aspects of water stress reactions and the correlation of aquaporins to abscisic acid as well as on the relation of water and CO2 permeability in leaves. 相似文献
82.
Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species 下载免费PDF全文
Stomata represent one resistor in a series of resistances for carbon and water exchange between the leaf and the atmosphere; the remaining resistors occurring within the leaf, commonly represented as mesophyll conductance to CO2, gm, and leaf hydraulic conductance, kLeaf. Recent studies have proposed that gm and kLeaf may be coordinated across species because of shared pathways. We assessed the correlation between gm and kLeaf within cotton, under growth CO2 partial pressure and irradiance treatments and also with short‐term variation in irradiance and humidity. gm was estimated using two isotopic techniques that allowed partitioning of total gm (Δ13C‐gm) into cell wall plus plasma membrane conductance (Δ18O‐gm) and chloroplast membrane conductance (gcm). A weak correlation was found between Δ13C‐gm and kLeaf only when measured under growth conditions. However, Δ18O‐gm was related to kLeaf under both short‐term environmental variation and growth conditions. Partitioning gm showed that gcm was not affected by short‐term changes in irradiance or correlated with kLeaf, but was strongly reduced at high growth CO2 partial pressure. Thus, simultaneous measurements of gm, kLeaf and gcm suggest independent regulation of carbon and water transport across the chloroplast membrane with limited coordinated regulation across the cell wall and plasma membrane. 相似文献
83.
Increased meteorological drought intensity with rising atmospheric demand for water (hereafter vapor pressure deficit [VPD]) increases the risk of tree mortality and ecosystem dysfunction worldwide. Ecosystem-scale water-use strategy is increasingly recognized as a key factor in regulating drought-related ecosystem responses. However, the link between water-use strategy and ecosystem vulnerability to meteorological droughts is poorly established. Using the global flux observations, historic hydroclimatic data, remote-sensing products, and plant functional-trait archive, we identified potentially vulnerable ecosystems, examining how ecosystem water-use strategy, quantified by the percentage bias (δ) of the empirical canopy conductance sensitivity to VPD relative to the theoretical value, mediated ecosystem responses to droughts. We found that prevailing soil water availability substantially impacted δ in dryland regions where ecosystems with insufficient soil moisture usually showed conservative water-use strategy, while ecosystems in humid regions exhibited more pronounced climatic adaptability. Hyposensitive and hypersensitive ecosystems, classified based on δ falling below or above the theoretical sensitivity, respectively, achieved similar net ecosystem productivity during droughts, employing different structural and functional strategies. However, hyposensitive ecosystems, risking their hydraulic system with a permissive water-use strategy, were unable to recover from droughts as quickly as hypersensitive ones. Our findings highlight that processed-based models predicting current functions and future performance of vegetation should account for the greater vulnerability of hyposensitive ecosystems to intensifying atmospheric and soil droughts. 相似文献
84.
Biomass Partitioning and Gas Exchange in Dalbergia sissoo seedlings under water stress 总被引:3,自引:0,他引:3
Biomass, leaf water potential (l), net photosynthetic rate (P
N), transpiration rate (E), stomatal conductance (g
s), leaf to air temperature difference (T
diff), and instantaneous water use efficiency (WUE) were measured in the seedlings of Dalbergia sissoo Roxb. grown under irrigation of 20 (W1), 14 (W2), 10 (W3), and 8 (W4) mm. Treatments were maintained by re-irrigation when water content of the soil reached 7.4% in W1, 5.6% in W2, 4.3% in W3, and 3.2% in W4. Seedlings in a control (W5) were left without irrigation after maintaining the soil field capacity (10.7%). Seedlings of W1 had highest biomass that was one tenth in W5. Biomass allocation was highest in leaf in W2 and in root in W4 and W5 treatments. Difference between predawn leaf water potential (Pd) and midday (mid) increased with soil water stress and with vapour pressure deficit (VPD) in April and May slowing down the recovery in plant leaf water status after transpiration loss. P
N, E, and g
s declined and T
diff increased from W1 to W5. Their values were highly significant in April and May for the severely stressed seedlings of W4 and W5. P
N increased from 08:00 to 10:00 and E increased until 13:00 within the day for most of the seedlings whereas g
s decreased throughout the day from 08:00 to 17:00. P
N and E were highest in March but their values were low in January, February, April, and May. Large variations in physiological variables to air temperature, photosynthetically active radiation, and vapour pressure deficit (VPD) indicated greater sensitivity of the species to environmental factors. WUE increased from W1 to W2 but decreased drastically at high water stress particularly during hot summer showing a kind of adaptation in D. sissoo to water stress. However, low biomass and reduced physiological functions at <50% of soil field capacity suggest that this species does not produce significant biomass at severe soil water stress or drought of a prolonged period. 相似文献
85.
Beatriz Fernndez‐Marín Javier Gulías Carlos M. Figueroa Concepcin Iiguez María J. Clemente‐Moreno Adriano Nunes‐Nesi Alisdair R. Fernie Lohengrin A. Cavieres Len A. Bravo Jos I. García‐Plazaola Jorge Gago 《The Plant journal : for cell and molecular biology》2020,101(4):979-1000
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water‐limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs), mesophyll conductance (gm) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin–Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole‐plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth. 相似文献
86.
Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland 下载免费PDF全文
Teresa E. Gimeno Tim R. McVicar Anthony P. O'Grady David T. Tissue David S. Ellsworth 《Global Change Biology》2018,24(7):3010-3024
Elevated atmospheric CO2 concentration (eCa) might reduce forest water‐use, due to decreased transpiration, following partial stomatal closure, thus enhancing water‐use efficiency and productivity at low water availability. If evapotranspiration (Et) is reduced, it may subsequently increase soil water storage (ΔS) or surface runoff (R) and drainage (Dg), although these could be offset or even reversed by changes in vegetation structure, mainly increased leaf area index (L). To understand the effect of eCa in a water‐limited ecosystem, we tested whether 2 years of eCa (~40% increase) affected the hydrological partitioning in a mature water‐limited Eucalyptus woodland exposed to Free‐Air CO2 Enrichment (FACE). This timeframe allowed us to evaluate whether physiological effects of eCa reduced stand water‐use irrespective of L, which was unaffected by eCa in this timeframe. We hypothesized that eCa would reduce tree‐canopy transpiration (Etree), but excess water from reduced Etree would be lost via increased soil evaporation and understory transpiration (Efloor) with no increase in ΔS, R or Dg. We computed Et, ΔS, R and Dg from measurements of sapflow velocity, L, soil water content (θ), understory micrometeorology, throughfall and stemflow. We found that eCa did not affect Etree, Efloor, ΔS or θ at any depth (to 4.5 m) over the experimental period. We closed the water balance for dry seasons with no differences in the partitioning to R and Dg between Ca levels. Soil temperature and θ were the main drivers of Efloor while vapour pressure deficit‐controlled Etree, though eCa did not significantly affect any of these relationships. Our results suggest that in the short‐term, eCa does not significantly affect ecosystem water‐use at this site. We conclude that water‐savings under eCa mediated by either direct effects on plant transpiration or by indirect effects via changes in L or soil moisture availability are unlikely in water‐limited mature eucalypt woodlands. 相似文献
87.
Ozone‐induced stomatal sluggishness changes stomatal parameters of Jarvis‐type model in white birch and deciduous oak 下载免费PDF全文
Y. Hoshika M. Watanabe E. Carrari E. Paoletti T. Koike 《Plant biology (Stuttgart, Germany)》2018,20(1):20-28
- Stomatal ozone flux is closely related to ozone injury to plants. Jarvis‐type multiplicative model has been recommended for estimating stomatal ozone flux in forest trees. Ozone can change stomatal conductance by both stomatal closure and less efficient stomatal control (stomatal sluggishness). However, current Jarvis‐type models do not account for these ozone effects on stomatal conductance in forest trees.
- We examined seasonal course of stomatal conductance in two common deciduous tree species native to northern Japan (white birch: Betula platyphylla var. japonica ; deciduous oak: Quercus mongolica var. crispula ) grown under free‐air ozone exposure. We innovatively considered stomatal sluggishness in the Jarvis‐type model using a simple parameter, s , relating to cumulative ozone uptake (defined as POD : phytotoxic ozone dose).
- We found that ozone decreased stomatal conductance of white birch leaves after full expansion (?28%). However, such a reduction of stomatal conductance by ozone fell in late summer (?10%). At the same time, ozone reduced stomatal sensitivity of white birch to VPD and increased stomatal conductance under low light conditions. In contrast, in deciduous oak, ozone did not clearly change the model parameters.
- The consideration of both ozone‐induced stomatal closure and stomatal sluggishness improved the model performance to estimate stomatal conductance and to explain the dose–response relationship on ozone‐induced decline of photosynthesis of white birch. Our results indicate that ozone effects on stomatal conductance (i.e . stomatal closure and stomatal sluggishness) are crucial for modelling studies to determine stomatal response in deciduous trees, especially in species sensitive to ozone.
88.
Relation of water transport to leaf gas exchange properties in three mangrove species 总被引:16,自引:0,他引:16
M. A. Sobrado 《Trees - Structure and Function》2000,14(5):258-262
Mangrove species more tolerant to salinity may function with less efficient water transport, which may be related to more
conservative water use. To test the hypothesis, we investigate the gas exchange and hydraulic properties of three mangrove
species: Rhizophora mangle L., Laguncularia racemosa Gaert and Avicennia germinans (L.)L. Experiments were performed with adult plants growing naturally in the field under a salinity of 35‰. Gas exchange
parameters showed that A. germinans had significantly higher photosynthetic rates, and lower stomatal conductance and transpiration rates, compared to the other
two mangroves. In concert with this, instantaneous water use efficiency was significantly high in A. germinans, intermediate in L. racemosa and lowest in R. mangle. The hydraulic parameters of the three mangrove species were in the lowest end of the range reported for tropical trees.
However, the three mangrove species exhibited measurable differences in hydraulic parameters related to the control of water
requirements for maintenance of carbon gain. L. racemosa and A. germinans showed less efficient water transport at shoot level but were the more efficient species in water use at the leaf level in
comparison to R. mangle.
Received: 7 April 1999 / Accepted: 25 July 1999 相似文献
89.
Qian Dong Sarah E. Ernst Lynda S. Ostedgaard Viral S. Shah Amanda R. Ver Heul Michael J. Welsh Christoph O. Randak 《The Journal of biological chemistry》2015,290(22):14140-14153
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. 相似文献
90.
Scholz FG Bucci SJ Goldstein G Meinzer FC Franco AC Miralles-Wilhelm F 《Plant, cell & environment》2007,30(2):236-248
Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on whole-plant water relations. The rate of decline in tissue water potential with relative water content (RWC) was greater in the outer parenchyma than in the sapwood for most of the species, resulting in tissue-and species-specific differences in capacitance. Sapwood capacitance on a tissue volume basis ranged from 40 to 160 kg m-3 MPa-1, whereas outer parenchyma capacitance ranged from 25 to only 60 kg m-3 MPa-1. In addition, osmotic potentials at full turgor and at the turgor loss point were more negative for the outer parenchyma compared with the sapwood, and the maximum bulk elastic modulus was higher for the outer parenchyma than for the sapwood. Sapwood capacitance decreased linearly with increasing sapwood density across species, but there was no significant correlation between outer parenchyma capacitance and tissue density. Midday leaf water potential, the total hydraulic conductance of the soil/leaf pathway and stomatal conductance to water vapour (gs) all increased with stem volumetric capacitance, or with the relative contribution of stored water to total daily transpiration. However, the difference between the pre-dawn water potential of non-transpiring leaves and the weighted average soil water potential, a measure of the water potential disequilibrium between the plant and soil, increased asymptotically with total stem capacitance across species, implying that overnight recharge of water storage compartments was incomplete in species with greater capacitance. Overall, stem capacitance contributes to homeostasis in the diurnal and seasonal water balance of Cerrado trees. 相似文献