首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1542篇
  免费   95篇
  国内免费   38篇
  1675篇
  2023年   33篇
  2022年   43篇
  2021年   34篇
  2020年   44篇
  2019年   76篇
  2018年   58篇
  2017年   44篇
  2016年   38篇
  2015年   45篇
  2014年   99篇
  2013年   67篇
  2012年   70篇
  2011年   76篇
  2010年   59篇
  2009年   65篇
  2008年   89篇
  2007年   88篇
  2006年   58篇
  2005年   58篇
  2004年   44篇
  2003年   34篇
  2002年   43篇
  2001年   27篇
  2000年   42篇
  1999年   38篇
  1998年   15篇
  1997年   20篇
  1996年   21篇
  1995年   17篇
  1994年   11篇
  1993年   18篇
  1992年   22篇
  1991年   15篇
  1990年   10篇
  1989年   10篇
  1988年   7篇
  1987年   6篇
  1986年   8篇
  1985年   10篇
  1984年   11篇
  1983年   17篇
  1982年   14篇
  1981年   8篇
  1980年   14篇
  1979年   15篇
  1978年   6篇
  1977年   4篇
  1975年   6篇
  1974年   6篇
  1972年   4篇
排序方式: 共有1675条查询结果,搜索用时 15 毫秒
991.
DNA methylation is a key epigenetic modification in mammals and has an essential and important role in muscle development. Insulin-like growth factor 2 (IGF2) is a fetal growth and differentiation factor that plays an important role in muscle growth and in myoblast proliferation and differentiation. The aim of this study was to evaluate the expression of IGF2 and the methylation pattern on the differentially methylated region (DMR) of the last exon of IGF2 in six tissues with two different developmental stages. The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The quantitative real-time PCR (qPCR) analysis indicated that IGF2 has a broad tissue distribution and the adult bovine group showed significant lower mRNA expression levels than that in the fetal bovine group (P < 0.05 or P < 0.01). Moreover, the DNA methylation level analysis showed that the adult bovine group exhibited a significantly higher DNA methylation levels than that in the fetal bovine group (P < 0.05 or P < 0.01). These results indicate that IGF2 expression levels were negatively associated with the methylation status of the IGF2 DMR during the two developmental stages. Our results suggest that the methylation pattern in this DMR may be a useful parameter to investigate as a marker-assisted selection for muscle developmental in beef cattle breeding program and as a model for studies in other species.  相似文献   
992.
993.

Background

A variant of the ether-à-go-go related channel (hERG), p.Arg148Trp (R148W) was found at heterozygous state in two infants who died from sudden infant death syndrome (SIDS), one with documented prolonged QTc and Torsade de Pointes (TdP), and in an adult woman with QTc > 500 ms, atrioventricular block and TdP. This variant was previously reported in cases of severe ventricular arrhythmia but very rarely in control subjects. Its classification as mutation or polymorphism awaited electrophysiological characterization.

Methods

The properties of this N-terminal, proximal domain, hERG variant were explored in Xenopus oocytes injected with the same amount of RNA encoding for either hERG/WT or hERG/R148W or their equimolar mixture. The human ventricular cell (TNNP) model was used to test the effects of changes in hERG current.

Results

R148W alone produced a current similar to the WT (369 ± 76 nA (mean ± SEM), n = 13 versus 342 ± 55 nA in WT, n = 13), while the co-expression of 1/2 WT + 1/2 R148W lowered the current by 29% versus WT (243 ± 35 nA, n = 13, p < 0.05). The voltage dependencies of steady-state activation and inactivation were not changed in the variant alone or in co-expression with the WT. The time constants of fast recovery from inactivation and of fast and slow deactivation analyzed between − 120 and + 20 mV were not changed. The voltage-dependent distribution of the current amplitudes among fast-, slow- and non-deactivating fractions was unaltered. A 6.6% increase in APD90 from 323.5 ms to 345 ms was observed using the human cardiac ventricular myocyte model.

Conclusions

Such a decrease in hERG current as evidenced here when co-expressing the hERG/R148W variant with the WT may have predisposed to the observed long QT syndrome and associated TdP. Therefore, the heterozygous carriers of hERG/R148W may be at risk of cardiac sudden death.  相似文献   
994.
995.
996.
997.
Chlorophyll is the most abundant pigment on earth and even though it is known that its high photo-excitability necessitates a tight regulation of its degradation pathway, to date there are still several steps in chlorophyll breakdown that remain obscure. In order to better understand the ‘degreening’ processes that accompany leaf senescence and fruit ripening, we characterized the enzyme-encoding genes involved in dephytylation from tomato (Solanum lycopersicum). A single pheophytinase (PPH) gene and four chlorophyllase (CLH) genes were identified in the tomato genome. A phenetic analysis revealed two groups of CLHs in eudicot species and further evolutionary analysis indicated that these enzymes are under diverse selection pressures. A comprehensive expression profile analysis also suggested functional specificity for these dephytylating enzymes. The integrated analysis allows us to propose three general roles for chlorophyll dephytylation: i) PPH, which is under high selective constraint, is responsible for chlorophyll degradation during developmentally programed physiological processes; ii) Group I CLHs, which are under relaxed selection constraint, respond to environmental and hormonal stimuli and play a role in plant adaptation plasticity; and iii) Group II CLHs, which are also under high selective constraint, are mostly involved in chlorophyll recycling.  相似文献   
998.
NPC1 gene is an important gene closely related to the Niemann–Pick type C (NPC). Mutations in the NPC1 gene tend to cause Niemann–Pick type C, a lysosomal storage disorder. Previous studies have shown that NPC1 protein plays an important role in subcellular lipid transport, homeostasis, platelet function and formation, which are basic metabolic activities in the process of development. In this study, to explore the association between the NPC1 gene variation and body size traits in Qinchuan cattle, we detected four novel coding single nucleotide polymorphisms (cSNPs) in the bovine NPC1 gene, including one missense mutation (SNP1) and three synonymous mutations (SNP2, SNP3 and SNP4). Population genetic analyses of 518 individuals and association correlations between cSNPs and bovine body size traits were conducted in this research. A missense mutation at SNP1 locus was found to be significantly related to the heart girth, hip width and body weight (P < 0.01 or P < 0.05, 3.5-year-old). Two synonymous mutations at SNP2 and SNP3 loci also showed significant effects on hip width (P < 0.05, 3.5-year-old). One synonymous mutation at SNP4 locus showed significant effect on body weight (P < 0.05, 2.0-year-old). Combined haplotypes H2H6 and H6H6 showed significant effects on body size traits such as heart girth, hip width, and body weight (3.5-year-old, P < 0.01 or P < 0.05). This study provides evidence that the NPC1 gene might be involved in the regulation of bovine growth and body development, and may be considered as a candidate gene for marker assisted selection (MAS) in beef cattle breeding industry.  相似文献   
999.
The structure of β-lactoglobulin (β-LG) is well characterized, but the exact location of binding sites for retinol and (−)-epigallocatechingallate (EGCG) is still a subject of controversy. Here we report that the genetic β-LG variants A, B and C have different numbers of binding sites for retinol (almost completely incorporated into the calyx), as well as for EGCG (exclusively bound on the surface), and β-LG A with the most binding sites for EGCG, which include Tyr20, Phe151 and His59. Upon heat related unfolding, new unspecific binding sites emerge, which are comparable in number and affinity for retinol and for EGCG, and in the three genetic variants A, B and C. The findings of our study provide new insights into the use of β-LG as nanotransporter.  相似文献   
1000.
The age‐dependent choice between expressing individual learning (IL) or social learning (SL) affects cumulative cultural evolution. A learning schedule in which SL precedes IL is supportive of cumulative culture because the amount of nongenetically encoded adaptive information acquired by previous generations can be absorbed by an individual and augmented. Devoting time and energy to learning, however, reduces the resources available for other life‐history components. Learning schedules and life history thus coevolve. Here, we analyze a model where individuals may have up to three distinct life stages: “infants” using IL or oblique SL, “juveniles” implementing IL or horizontal SL, and adults obtaining material resources with learned information. We study the dynamic allocation of IL and SL within life stages and how this coevolves with the length of the learning stages. Although no learning may be evolutionary stable, we find conditions where cumulative cultural evolution can be selected for. In that case, the evolutionary stable learning schedule causes individuals to use oblique SL during infancy and a mixture between IL and horizontal SL when juvenile. We also find that the selected pattern of oblique SL increases the amount of information in the population, but horizontal SL does not do so.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号