首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1552篇
  免费   189篇
  国内免费   26篇
  1767篇
  2024年   1篇
  2023年   43篇
  2022年   72篇
  2021年   149篇
  2020年   139篇
  2019年   109篇
  2018年   123篇
  2017年   83篇
  2016年   65篇
  2015年   69篇
  2014年   133篇
  2013年   127篇
  2012年   68篇
  2011年   68篇
  2010年   44篇
  2009年   69篇
  2008年   80篇
  2007年   48篇
  2006年   45篇
  2005年   33篇
  2004年   26篇
  2003年   28篇
  2002年   15篇
  2001年   14篇
  2000年   5篇
  1999年   6篇
  1998年   9篇
  1997年   14篇
  1996年   14篇
  1995年   8篇
  1994年   8篇
  1993年   3篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   2篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   8篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有1767条查询结果,搜索用时 15 毫秒
991.
Understanding long‐term, ecosystem‐level impacts of climate change is challenging because experimental research frequently focuses on short‐term, individual‐level impacts in isolation. We address this shortcoming first through an interdisciplinary ensemble of novel experimental techniques to investigate the impacts of 14‐month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterize a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual‐level responses, while acidification had a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual‐level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large‐scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local‐environmental conditions and resource availability. Such changes in macro‐scale distributions cannot be predicted by investigating individual‐level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long‐term, multiscale responses to multiple stressors, in an ecosystem context.  相似文献   
992.
We evaluated the absorbed dose to critical organs, as well as the image quality, at different partial angles in kV-CBCT (Cone Beam Computed Tomography) scanning of the head and neck region. CBCT images of phantom from a 200° rotation were performed by using three different scanning paths, anterior, posterior, and right lateral with Catphan504 and RANDO phantoms. Critical organ dose was measured using TLD 100H in the RANDO phantom. The image quality of those phantoms was evaluated, using HU uniformity, HU linearity, contrast-to-noise ratio, low contrast visibility and spatial resolution with the Catphan504 dataset; and 5-point grading scales for the RANDO phantom dataset by five radiation oncologists. The image qualities from Catphan504 and RANDO phantom of every scanning path were comparable, with no statistically significant difference (p ≥ 0.05). However, there was a significant difference in the critical organ dose in all paths (p < 0.05), depending on the critical organ location and the scanning direction. Scanning directions show no effects on the image quality. Differences in absorbed dose to critical organs should were evaluated. The posterior scanning path for the CBCT was deemed preferable due because of considerably lower doses to several critical organs of the head and neck region.  相似文献   
993.
This paper studies low contrast detectability (LCD) performance of two model observers in CT phantom images acquired at different kVp levels and compares the results with humans in a 2-alternative forced choice experiment (2-AFC). Images of the Catphan phantom with objects of different contrasts (0.5 and 1%) and diameters (2–15 mm) were acquired in an Aquilion ONE 320-detector row CT (Toshiba Medical Systems, Tokyo, Japan), in two experiments, selecting (80–100–120–135 kV) with fixed mAs and varying the mAs to keep the dose constant, respectively. Four human observers evaluated the objects visibility obtaining a proportion correct (PC) for each case. LCD was also analyzed with two model observers (non-prewhitening matched filter with an eye filter, NPWE, and channelized Hotelling observer with Gabor channels, CHO).Object contrast was affected by kV, with differences up to 17% between the lowest and highest kV. Both models overestimated human performance and were corrected by efficiency and internal noise factors. The NPWE model reproduced better the human PC values trends showing Pearson's correlation coefficients ≥0.976 (0.954–0.987, 95% CI) for both experiments, whereas for CHO they were ≥0.706 (0.493–0.839). Bland–Altman plots showed better agreement between NPWE and humans being the average difference Δ and the range of the differences Δ±2σ (σ, standard deviation) of Δ=−0.3%, Δ±2σ = [−4.0%,4.5%]. For CHO, Δ=−1.2%, Δ± 2σ= [−10.7%,8.3%]. The NPWE model can be a useful tool to predict human performance in CT low contrast detection tasks in a standard phantom and be potentially used in protocol optimization based on kV selection.  相似文献   
994.
We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non‐epithelial spaces (stroma) of many organs (see www.telocytes.com ). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB‐SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB‐SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon‐like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB‐SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc.  相似文献   
995.
996.
PurposeTo compare patient radiation doses in cone beam computed tomography (CBCT) of two mobile systems used for navigation-assisted mini-invasive orthopedic surgery: O-arm®O2 and Surgivisio®.MethodsThe study focused on imaging of the spine. Thermoluminescent dosimeters were used to measure organs and effective doses (ED) during CBCT. An ionization-chamber and a solid-state sensor were used to measure the incident air-kerma (Ki) at the center of the CBCT field-of-view and Ki during 2D-imaging, respectively. The PCXMC software was used to calculate patient ED in 2D and CBCT configurations. The image quality in CBCT was evaluated with the CATPHAN phantom.ResultsThe experimental ED estimate for the low-dose 3D-modes was 2.41 and 0.35 mSv with O-arm®O2 (Low Dose 3D-small-abdomen) and Surgivisio® (3DSU-91 images), respectively. PCXMC results were consistent: 1.54 and 0.30 mSv. Organ doses were 5 to 12 times lower with Surgivisio®. Ki at patient skin were comparable on lateral 2D-imaging (0.5 mGy), but lower with O-arm®O2 on anteroposterior (0.3 versus 0.9 mGy). Both systems show poor low contrast resolution and similar high contrast spatial resolution (7 line-pairs/cm).ConclusionsThis study is the first to evaluate patient ED and organ doses with Surgivisio®. A significant difference in organs doses was observed between the CBCT systems. The study demonstrates that Surgivisio® used on spine delivers approximately five to six times less patient ED, compared to O-arm®O2, in low dose 3D-modes. Doses in 2D-mode preceding CBCT were higher with Surgivisio®, but negligible compared to CBCT doses under the experimental conditions tested.  相似文献   
997.
目的:对比高分辨率电子计算机断层扫描(CT)与常规CT检查对肺小结节及早期肺癌的诊断价值。方法:将2018年6月2020年1月我院收治的肺小结节及早期肺癌患者94例纳入研究。以随机数字表法将其分为观察组及对照组,每组各47例,对照组实施常规CT检查,观察组则实施高分辨率CT检查。比较两组CT肿瘤征象情况(主要包括毛刺征、分叶征、棘突征、钙化征、空泡征、支气管征、胸膜凹陷征、血管集束征),CT扫描图像质量,诊断肺小结节及早期肺癌的效能。结果:观察组各项CT肿瘤征象人数占比均高于对照组(P<0.05)。观察组CT扫描图像质量优良率为97.87%(46/47),高于对照组的72.34%(34/47)(P<0.05)。高分辨率CT诊断早期肺癌的灵敏度及准确度、特异度分别为96.67%(29/30)、95.74%(45/47)、94.12%(16/17),高于常规CT检查的74.19%(23/31)、74.47%(35/47)、75.00%(12/16)。结论:高分辨率CT检查对肺小结节及早期肺癌诊断价值显著高于常规CT检查,可作为临床肺小结节及早期肺癌诊断的有效影像学手段,值得临床应用。  相似文献   
998.
Immobilization, such as prolonged bed rest, is a risk factor for bone loss in humans. Motivated by the emerging utility of zebrafish (Danio rerio) as an animal of choice for the study of musculoskeletal disease, here we report a model of restricted mobility induced osteopenia in adult zebrafish. Aquatic tanks with small cubical compartments to restrict the movement and locomotion of single fish were designed and fabricated for this study. Adult zebrafish were divided into two groups: a normal control (CONT) and a restricted mobility group (RMG) (18 fish/group). Six fish from each group were euthanized on days 14, 21 and 35 of the movement restriction. By using microcomputed tomography (micro-CT), we assessed bone volume/tissue volume (BV/TV) and bone density in the whole skeleton of the fish. Furthermore, we assessed skeletal shape in the vertebrae (radius, length, volume, neural and haemal arch aperture areas, neural and haemal arch angle, and thickness of the intervertebral space), single vertebra bone volume and bone density. Movement restriction significantly decreased vertebral skeletal parameters such as radius, length, volume, arch aperture areas and angles as well as the thickness of the intervertebral space in RMG. Furthermore, restricted mobility significantly (P < 0.001) decreased BV/TV and bone density as compared to the CONT group, starting as early as 14 days. By analysing zebrafish from CONT and RMG, we show that micro-CT imaging is a sensitive method to quantify distinct skeletal properties in zebrafish. We further defined the micro-CT parameters which can be used to examine the effects of restricted mobility on the skeleton of the fish. Our findings propose a rapid and effective osteopenia “stabulation” model, which could be used widely for osteoporosis drug screening.  相似文献   
999.
1000.
While micro-FE simulations have become a standard tool in computational biomechanics, the choice of appropriate material properties is still a relevant topic, typically involving empirical grey value-to-elastic modulus relations. We here derive the voxel-specific volume fractions of mineral, collagen, and water, from tissue-independent bilinear relations between mineral and collagen content in extracellular bone tissue (J. Theor. Biol. 287: 115, 2011), and from the measured X-ray attenuation information quantified in terms of grey values. The aforementioned volume fractions enter a micromechanics representation of bone tissue, as to deliver voxel-specific stiffness tensors. In order to check the relevance of this strategy, we convert a micro Computer Tomograph of a mouse femur into a regular Finite Element mesh, apply forces related to the dead load of a standing mouse, and then compare simulation results based on voxel-specific heterogeneous elastic properties to results based on homogeneous elastic properties related to the spatial average over the solid bone matrix compartment, of the X-ray attenuation coefficients. The element-specific strain energy density illustrates that use of homogeneous elastic properties implies overestimation of the organ stiffness. Moreover, the simulation reveals large tensile normal stresses throughout the femur neck, which may explain the mouse femur neck's trabecular morphology being quite different from the human case, where the femur neck bears compressive forces and bending moments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号