首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87732篇
  免费   5863篇
  国内免费   3444篇
  2023年   1343篇
  2022年   1915篇
  2021年   2789篇
  2020年   2700篇
  2019年   3740篇
  2018年   3265篇
  2017年   2361篇
  2016年   2337篇
  2015年   2925篇
  2014年   5529篇
  2013年   6920篇
  2012年   4194篇
  2011年   5459篇
  2010年   4157篇
  2009年   4537篇
  2008年   4688篇
  2007年   4730篇
  2006年   4192篇
  2005年   3689篇
  2004年   3285篇
  2003年   2627篇
  2002年   2338篇
  2001年   1532篇
  2000年   1266篇
  1999年   1289篇
  1998年   1230篇
  1997年   1019篇
  1996年   929篇
  1995年   871篇
  1994年   796篇
  1993年   633篇
  1992年   625篇
  1991年   538篇
  1990年   439篇
  1989年   397篇
  1988年   340篇
  1987年   306篇
  1986年   249篇
  1985年   480篇
  1984年   694篇
  1983年   503篇
  1982年   550篇
  1981年   442篇
  1980年   377篇
  1979年   337篇
  1978年   282篇
  1977年   252篇
  1976年   243篇
  1975年   192篇
  1974年   169篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
991.
992.
Efficient expression of multiple genes is critical to yeast metabolic engineering for the bioproduction of bulk and fine chemicals. A yeast polycistronic expression system is of particular interest because one promoter can drive the expression of multiple genes. 2A viral peptides enable the cotranslation of multiple proteins from a single mRNA by ribosomal skipping. However, the wide adaptation of 2A viral peptides for polycistronic-like gene expression in yeast awaits in-depth characterizations. Additionally, a one-step assembly of such a polycistronic-like system is highly desirable. To this end, we have developed a modular cloning (MoClo) compatible 2A peptide-based polycistronic-like system capable of expressing multiple genes from a single promoter in yeast. Characterizing the bi-, tri-, and quad-cistronic expression of fluorescent proteins showed high cleavage efficiencies of three 2A peptides: E2A from equine rhinitis B virus, P2A from porcine teschovirus-1, and O2A from Operophtera brumata cypovirus-18. Applying the polycistronic-like system to produce geraniol, a valuable industrial compound, resulted in comparable or higher titers than using conventional monocistronic constructs. In summary, this highly-characterized polycistronic-like gene expression system is another tool to facilitate multigene expression for metabolic engineering in yeast.  相似文献   
993.
Prepacked chromatography columns and cassette filtration units offer many advantages in bioprocessing. These include reduced labor costs and processing times, ease of storage, and enhanced process flexibility. Rectangular formats are particularly attractive as they can be easily stacked and multiplexed together for continuous processing. Cylindrical chromatography beds have dominated bioprocessing even though their bed support and pressure-flow performance vary with bed dimensions. This work presents the performance of novel, rhombohedral chromatography devices with internally supported beds. They are compatible with existing chromatography workstations and can be packed with any standard commercial resin. The devices offer pressure-flow characteristics independent of container-volume, simple multiplexing, and separation performance comparable to cylindrical columns. Their bi-planar, internal bed support allows mechanically less-rigid resins to be used at up to four times higher maximal linear velocities, and productivities approaching 200 g/L/h for affinity resins, compared to the 20 g/L/h typical of many column-based devices. Three 5 L devices should allow processing of up to 3 kg of monoclonal antibody per hour.  相似文献   
994.
Full-length (membrane bound) and truncated (secreted) forms of the beta 2 integrin heterodimer, CD11b/CD18 (Mac-1), were expressed in a human kidney cell line (293) that normally does not express leukocyte adhesion molecules (Leu-CAMs). The biosynthesis of recombinant Mac-1 in 293 cells differed from that reported for leukocytes in that heterodimer formation was not required for CD11b to be exported to the cell surface. A stable cell line was constructed that constitutively secreted the recombinant, truncated Mac-1 heterodimer into growth conditioned cell culture medium. A novel monoclonal antibody that enabled an immunoaffinity method for the selective purification of recombinant Mac-1 heterodimers was identified. Sufficient protein was purified to allow the first measurement of the 50% inhibitory concentration (IC50) for CD11b/CD18 and for the direct comparison of the inhibitory activity of recombinant soluble Mac-1 with that of various CD18 and CD11b specific monoclonal antibodies. Purified recombinant soluble Mac-1 inhibited the binding of neutrophils, activated by opsonized zymosan or fMet-Leu-Phe peptide, to human umbilical vein endothelial cells. Similarly, the recombinant integrin was effective in inhibiting the binding of unactivated neutrophils to tumor necrosis factor (TNF-alpha) activated endothelial cells. The availability of an abundant source of purified, biologically active Mac-1 will enable direct physical and chemical investigations into the relationship between the structure and function of this leukocyte adhesion molecule.  相似文献   
995.
996.
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional DNA repair protein localized in different subcellular compartments. The mechanisms responsible for the highly regulated subcellular localization and “interactomes” of this protein are not fully understood but have been closely correlated to the posttranslational modifications in different biological context. In this work, we attempted to develop a bio-nanocomposite with antibody-like properties that could capture APE1 from cellular matrices to enable the comprehensive study of this protein. By fixing the template APE1 on the avidin-modified surface of silica-coated magnetic nanoparticles, we first added 3-aminophenylboronic acid to react with the glycosyl residues of avidin, followed by addition of 2-acrylamido-2-methylpropane sulfonic acid as the second functional monomer to perform the first step imprinting reaction. To further enhance the affinity and selectivity of the binding sites, we carried out the second step imprinting reaction with dopamine as the functional monomer. After the polymerization, we modified the nonimprinted sites with methoxypoly (ethylene glycol) amine (mPEG-NH2). The resulting molecularly imprinted polymer-based bio-nanocomposite showed high affinity, specificity, and capacity for template APE1. It allowed for the extraction of APE1 from the cell lysates with high recovery and purity. Moreover, the bound protein could be effectively released from the bio-nanocomposite with high activity. The bio-nanocomposite offers a very useful tool for the separation of APE1 from various complex biological samples.  相似文献   
997.
Macrophage colony stimulating factor (CSF-1) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are potent inducers of macrophage differentiation. Both appear to modulate protein phosphorylation, at least in part, through protein kinase C (PKC) raising the question as to whether they concurrently impact on macrophage-like cells. In this regard, we utilized the CSF-1 dependent murine macrophage-like line BAC 1.25F5. CSF-1 treatment of these cells for 30 min leads to particular phosphorylation of a 165 kDa protein, the putative CSF-1 receptor, and a 210 kDa moiety. 1,25(OH)2D3 exposure for 24 h prior to addition of CSF-1 enhances phosphorylation of the 165 kDa species and, especially, the 210 kDa protein. Phosphorylation of the latter protein is 1,25(OH)2D3 dose- and time-dependent and the molecule is specifically immunoprecipitated with a rabbit polyclonal anti-talin antibody. Experiments with okadaic acid show that the enhanced phosphorylation of talin does not result from serine phosphatase inhibition. CSF-1 and 1,25(OH)2D3, alone or in combination, do not increase talin protein expression. The tyrosine kinase inhibitor, genestein, blocks 1,25(OH)2D3/CSF-1 induced phosphorylation of the putative CSF-1 receptor but has no effect on talin phosphorylation which occurs exclusively on serine. In contrast to genestein, staurosporin, an inhibitor of PKC, inhibits phosphorylation of talin. Moreover, exposure of 1,25(OH)2D3 pretreated cells to phorbol 12-myristate 13-acetate (PMA) in place of CSF-1 also prompts talin phosphorylation. Finally, 1,25(OH)2D3 enhances 3[H]PDBu binding, indicating that the steroid increases PMA receptor capacity. Thus, CSF-1 and 1,25(OH)2D3 act synergistically via PKC to phosphorylate talin, a cytoskeletal-associated protein.  相似文献   
998.
999.
Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr–Purcell–Meiboom–Gill (CPMG) NMR relaxation dispersion (RD) experiments that report on the population of the sparsely populated open conformation as well as on the exchange rate between the two conformations. To obtain volumetric information on the open conformation as well as on the transition state structure we made use of RD measurements at elevated pressures. We found that the open Dcp1:Dcp2 conformation has a lower molecular volume than the closed conformation and that the transition state is close in volume to the closed state. In the presence of ATP the volume change upon opening of the complex increases and the volume of the transition state lies in-between the volumes of the closed and open state. These findings show that ATP has an effect on the volume changes that are associated with the opening-closing pathway of the complex. Our results highlight the strength of pressure dependent NMR methods to obtain insights into structural features of protein conformations that are not directly observable. As our work makes use of methyl groups as NMR probes we conclude that the applied methodology is also applicable to high molecular weight complexes.  相似文献   
1000.
Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson’s disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号