首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4179篇
  免费   279篇
  国内免费   537篇
  2024年   10篇
  2023年   122篇
  2022年   118篇
  2021年   161篇
  2020年   175篇
  2019年   146篇
  2018年   141篇
  2017年   156篇
  2016年   147篇
  2015年   159篇
  2014年   205篇
  2013年   353篇
  2012年   145篇
  2011年   200篇
  2010年   150篇
  2009年   211篇
  2008年   226篇
  2007年   201篇
  2006年   178篇
  2005年   179篇
  2004年   138篇
  2003年   142篇
  2002年   119篇
  2001年   88篇
  2000年   87篇
  1999年   93篇
  1998年   77篇
  1997年   78篇
  1996年   61篇
  1995年   78篇
  1994年   54篇
  1993年   56篇
  1992年   55篇
  1991年   37篇
  1990年   54篇
  1989年   29篇
  1988年   35篇
  1987年   32篇
  1986年   39篇
  1985年   43篇
  1984年   51篇
  1983年   36篇
  1982年   43篇
  1981年   21篇
  1980年   21篇
  1979年   14篇
  1978年   4篇
  1977年   8篇
  1976年   8篇
  1974年   5篇
排序方式: 共有4995条查询结果,搜索用时 501 毫秒
181.
An incubation experiment was conducted to estimate redox buffer capacity of “water-rock-microbe” interaction systems in sedimentary rocks. The water chemistry, microbial growth and community structure were analyzed during the incubations. The dissolved oxygen (DO) concentrations and oxidation-reduction potential (ORP) values decreased notably in the presence of active microorganisms, whereas abiotic reactions did not lead to reducing conditions during incubation. The change in microbial community structure suggests that nitrate-reducing and sulfate-reducing bacteria played an important role in reduction of water by using lignite-derived organic matter. These results show that the microbial role is extremely important for the redox buffering capacity in sedimentary rock environments.  相似文献   
182.

Degradation processes of organoarsenic compounds significantly influence arsenic cycles in aquatic environments and would depend on the bacterial activities. The bacterial population involving dimethylarsinic acid (DMAA) degradation was investigated in Lake Kibagata from April to December in 2003. During the experimental period, the methylated arsenic was not detected, although the inorganic arsenic concentration ranged from 3.4 nM to 9.2 nM. Moreover, in the sample water of Lake Kibagata to which DMAA added, DMAA decreased while inorganic arsenic increased for 25 days. These facts suggested that the bacteria remineralized methylate arsenic species to inorganic arsenic. In fact, monitoring the use of Most Probable Number (MPN) procedure demonstrated that the DMAA-degrading bacteria exist at cell densities ranged from 41 cells/ml to 510 cells/ml. To determine the composition of DMAA-degrading bacteria, the total 110 isolates obtained as dominated bacterial species were analyzed by the restriction-fragment-length polymorphism (RFLP) analysis of 16S rDNA. As a result, total 110 isolates were classified into 12 types, of which 4 types dominated during the spring and/or fall seasons, and the rest 8 types dominated during summer season. DMAA degrading activities of the 110 isolates ranged at various degrees. Especially, the some isolates of fall season tend to show high degradation activities. The phylogenetic analysis using 16S rDNA revealed that the representative isolates formed several clusters in the gram-positive bacterial group and the proteobacteria subdivision. The diverse compositions of DMAA-degrading bacteria would seasonally change to control the rates of organoarsenic degradation in Kibagata.  相似文献   
183.
In mammalian cells, levels of the integral membrane proteins 3-hydroxy-3-methylglutaryl-CoA reductase and Insig-1 are controlled by lipid-regulated endoplasmic reticulum-associated degradation (ERAD). The ERAD of reductase slows a rate-limiting step in cholesterol synthesis and results from sterol-induced binding of its membrane domain to Insig-1 and the highly related Insig-2 protein. Insig binding bridges reductase to ubiquitin ligases that facilitate its ubiquitination, thereby marking the protein for cytosolic dislocation and proteasomal degradation. In contrast to reductase, Insig-1 is subjected to ERAD in lipid-deprived cells. Sterols block this ERAD by inhibiting Insig-1 ubiquitination, whereas unsaturated fatty acids block the reaction by preventing the protein''s cytosolic dislocation. In previous studies, we found that the membrane domain of mammalian reductase was subjected to ERAD in Drosophila S2 cells. This ERAD was appropriately accelerated by sterols and required the action of Insigs, which bridged reductase to a Drosophila ubiquitin ligase. We now report reconstitution of mammalian Insig-1 ERAD in S2 cells. The ERAD of Insig-1 in S2 cells mimics the reaction that occurs in mammalian cells with regard to its inhibition by either sterols or unsaturated fatty acids. Genetic and pharmacologic manipulations coupled with subcellular fractionation indicate that Insig-1 and reductase are degraded through distinct mechanisms that are mediated by different ubiquitin ligase complexes. Together, these results establish Drosophila S2 cells as a model system to elucidate mechanisms through which lipid constituents of cell membranes (i.e., sterols and fatty acids) modulate the ERAD of Insig-1 and reductase.  相似文献   
184.
Amphetamine has well‐established actions on pre‐synaptic dopamine signaling, such as inhibiting uptake and degradation, activating synthesis, depleting vesicular stores, and promoting dopamine‐transporter reversal and non‐exocytotic release. Recent in vivo studies have identified an additional mechanism: augmenting vesicular release. In this study, we investigated how amphetamine elicits this effect. Our hypothesis was that amphetamine enhances vesicular dopamine release in dorsal and ventral striata by differentially targeting dopamine synthesis and degradation. In urethane‐anesthetized rats, we employed voltammetry to monitor dopamine, electrical stimulation to deplete stores or assess vesicular release and uptake, and pharmacology to isolate degradation and synthesis. While amphetamine increased electrically evoked dopamine levels, inhibited uptake, and up‐regulated vesicular release in both striatal sub‐regions in controls, this psychostimulant elicited region‐specific effects on evoked levels and vesicular release but not uptake in drug treatments. Evoked levels better correlated with vesicular release compared with uptake, supporting enhanced vesicular release as an important amphetamine mechanism. Taken together, these results suggested that amphetamine enhances vesicular release in the dorsal striatum by activating dopamine synthesis and inhibiting dopamine degradation, but targeting an alternative mechanism in the ventral striatum. Region‐distinct activation of vesicular dopamine release highlights complex cellular actions of amphetamine and may have implications for its behavioral effects.  相似文献   
185.
186.
Chemical synthesis of the deuterium isotope desmosine-d4 has been achieved. This isotopic compound possesses all four deuterium atoms at the alkanyl carbons of the alkyl amino acid substitution in the desmosine molecule and is stable toward acid hydrolysis; this is required in the measurement of two crosslinking molecules, desmosine and isodesmosine, as biomarkers of elastic tissue degradation. The degradation of elastin occurs in several widely prevalent diseases. The synthesized desmosine-d4 is used as the internal standard to develop an accurate and sensitive isotope-dilution liquid chromatography–tandem mass spectrometry analysis, which can serve as a generalized method for an accurate analysis of desmosine and isodesmosine as biomarkers in many types of biological tissues involving elastin degradation.  相似文献   
187.
The efficient synthesis of 7-substituted pyrido[2′,3′:4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues is described. 3,5-Dibromopyridine was converted into 3-amino-6-bromofuro[3,2-b]pyridine-2-carbonitrile intermediate which was formylated with DMFDMA. Functionalization at position 7 of the tricyclic scaffold was accomplished, before or after cyclisation step, by palladium-catalyzed Suzuki–Miyaura cross-coupling while the pyrimidin-4-amines and N-aryl counterparts were synthesized by microwave-assisted formamide degradation and Dimroth rearrangement, respectively. The final products were evaluated for their potent inhibition of a series of five Ser/Thr kinases (CDK5/p25, CK1δ/ε, CLK1, DYRK1A, GSK3α/β). Compound 35 showed the best inhibitory activity with an IC50 value of 49 nM and proved to be specific to CLK1 among the panel of tested kinases.  相似文献   
188.
Understanding the relationship between the amino‐acid sequence of a protein and its ability to fold and to function is one of the major challenges of protein science. Here, cases are reviewed in which mutagenesis, biochemistry, structure determination, protein engineering, and single‐molecule biophysics have illuminated the sequence determinants of folding, binding specificity, and biological function for DNA‐binding proteins and ATP‐fueled machines that forcibly unfold native proteins as a prelude to degradation. In addition to structure‐function relationships, these studies provide information about folding intermediates, mutations that accelerate folding, slow unfolding, and stabilize proteins against denaturation, show how new binding specificities and folds can evolve, and reveal strategies that proteolytic machines use to recognize, unfold, and degrade thousands of distinct substrates.  相似文献   
189.
本文建立了一个快速高效的HPLC方法同时检测苦杏仁苷及其4个体外酶解产物,色谱分析系统为安捷伦液相色谱系统,自动进样器,迪马ODS C18色谱柱(250 mm×4.6 mm,5μm),柱温25℃,流动相30%甲醇,检测波长210 nm,进样量10μL。结果表明,苦杏仁苷、phenyl-(3,4,5-trihydroxy-6-methyl-tetrahydro-pyran-2-yloxy)-acetonitrile、野樱花苷、苯甲醛和杏仁腈的保留时间分别为5.087、13.836、16.357、22.775和3.307 min。该HPLC方法的重现性好,精确度和准确度高,当柱温低于30℃、pH值介于6.0~7.0时该方法结果稳定、重现性好。  相似文献   
190.
Eight α-N-acyl colistin nonapeptide derivatives including three aliphatic, four aromatic and one alicyclic derivatives were synthesized by the reaction of colistin nonapeptide with corresponding acid chlorides. This acylation reaction was carried out under the condition kept restrictedly at pH 5,0 in order to introduce an acyl group only to α-amino group but not to γ-amino group existing in a colistin nonapeptide molecule. Synthetic method and several physico-chemical natures of these acyl colistin nonapeptide derivatives are given in this paper.

All of the acylated derivatives thus synthesized exhibited characteristic antimicrobial activities. Antimicrobial spectra were substantially based upon a gram-negative type and not so much altered by chemical structures of acyl groups which were considerably differentiated from each other such as cyclic or chain form. Thus, more possible response of carbon size than its structure to the antimicrobial effectiveness was inferred. In spite of almost no toxicity and feeble antimicrobial activity of colistin nonapeptide itself, these acylated colistin nonapeptide derivatives showed a toxicity against mice at a dose of 16.9~70 mg/kg in LD50, which, however, was inferior to the toxicity of colistin sulfate, possibly correspondent to their much weaker antimicrobial activities, as a whole. Hence, it seems likely that acyl part of these acylated colistin nonapeptide derivatives including that of colistin is seriously responsible for the biological activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号