首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4179篇
  免费   279篇
  国内免费   537篇
  2024年   10篇
  2023年   122篇
  2022年   118篇
  2021年   161篇
  2020年   175篇
  2019年   146篇
  2018年   141篇
  2017年   156篇
  2016年   147篇
  2015年   159篇
  2014年   205篇
  2013年   353篇
  2012年   145篇
  2011年   200篇
  2010年   150篇
  2009年   211篇
  2008年   226篇
  2007年   201篇
  2006年   178篇
  2005年   179篇
  2004年   138篇
  2003年   142篇
  2002年   119篇
  2001年   88篇
  2000年   87篇
  1999年   93篇
  1998年   77篇
  1997年   78篇
  1996年   61篇
  1995年   78篇
  1994年   54篇
  1993年   56篇
  1992年   55篇
  1991年   37篇
  1990年   54篇
  1989年   29篇
  1988年   35篇
  1987年   32篇
  1986年   39篇
  1985年   43篇
  1984年   51篇
  1983年   36篇
  1982年   43篇
  1981年   21篇
  1980年   21篇
  1979年   14篇
  1978年   4篇
  1977年   8篇
  1976年   8篇
  1974年   5篇
排序方式: 共有4995条查询结果,搜索用时 703 毫秒
171.
172.
Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3′ UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3′ UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through–deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.  相似文献   
173.
174.
175.
176.
Summary

Three kinds of yolk proteins (vitellin, egg-specific protein and 30 k-proteins) are found in silkmoth eggs and have been well characterized. Essentially these proteins are considered to be amino acid reserves for developing embryos. Since at an early stage of egg development the cysteine proteinase accounts for the majority of the total proteinase activity, it may be involved in the degradation of yolk proteins. The enzyme is stored in the eggs as an inactive pro-form, indicating that the activation of the enzyme might be one of the key steps in yolk protein degradation. To investigate at the molecular level how yolk proteins degradation takes place, we have studied Bombyx acid cysteine proteinase (BCP) during an early period of embryonic development. We summarize how proteinases are regulated and are involved in the degradation of Bombyx yolk proteins during embryogenesis. These will be discussed mainly in light of recent results obtained from eggs of the silkmoth, Bombyx mori.  相似文献   
177.
This study investigates the influence of Aloe vera on water absorption and the in vitro degradation rate of Aloe vera-Ca-alginate hydrogel films, for wound healing and drug delivery applications. The influence of A. vera content (5%, 15% and 25%, v/v) on water absorption was evaluated by the incubation of the films into a 0.1 M HCl solution (pH 1.0), acetate buffer (pH 5.5) and simulated body fluid solution (pH 7.4) during 24 h. Results show that the water absorption is significantly higher for films containing high A. vera contents (15% and 25%), while no significant differences are observed between the alginate neat film and the film with 5% of A. vera. The in vitro enzymatic degradation tests indicate that an increase in the A. vera content significantly enhances the degradation rate of the films. Control films, incubated in a simulated body fluid solution without enzymes, are resistant to the hydrolytic degradation, exhibiting reduced weight loss and maintaining its structural integrity. Results also show that the water absorption and the in vitro degradation rate of the films can be tailored by changing the A. vera content.  相似文献   
178.
Identifying and explaining bottlenecks in organic carbon mineralization and the persistence of organic matter in marine sediments remain challenging. This study aims to illuminate the process of carbon flow between microorganisms involved in the sedimentary microbial food chain in anoxic, organic-rich sediments of the central Namibian upwelling system, using biogeochemical rate measurements and abundances of Bacteroidetes, Gammaproteobacteria, and sulfate-reducing bacteria at two sampling stations. Sulfate reduction rates decreased by three orders of magnitude in the top 20 cm at one sampling station (280 nmol cm?3 d?1 – 0.1 nmol cm?3 d?1) and by a factor of 7 at the second station (65 nmol cm?3 d?1 – 9.6 nmol cm?3 d?1). However, rates of enzymatic hydrolysis decreased by less than a factor of three at both sampling stations for the polysaccharides laminarin (23 nmol cm?3 d?1– 8 nmol cm?3 d?1 and 22 nmol cm?3 d?1– 10 nmol cm?3 d?1) and pullulan (11 nmol cm?3 d?1– 4 nmol cm?3 d?1 and 8 nmol cm?3 d?1– 6 nmol cm?3 d?1). Increasing imbalance between carbon turnover by hydrolysis and terminal oxidation with depth, the steep decrease in cell specific activity of sulfate reducing bacteria with depth, low concentrations of volatile fatty acids (less than 15 μM), and persistence of dissolved organic carbon, suggest decreasing bioavailability and substrate limitation with depth.  相似文献   
179.
This study sought to understand the origin and fate of one of the bitumen mounds found on the bottom of Lake Baikal. These mounds are located at a depth of 900 m beneath oil spots detected on the surface of Lake Baikal (53° 18′24, 108° 23′20). The two mounds were sampled with a manipulator from a “MIR” deep-water manned submersible. Mature mound No. 8 was subjected to chemical and microbiological studies. Mound No. 3 was subjected only to chemical studies; we failed to perform microbiological analyses of this mound for logistic reasons. Oil spots collected from the water surface, samples of mound No. 3 and No. 8, were subjected to GC/MS analysis. The water contained aliphatic hydrocarbons with chains between C8 and C23, with the most abundant chain length being C18. Mound No. 3 with the most abundant chain length being C18 actively released oil droplets into the water. It contained 770 mg/g of C13-C32 n-alkanes, with a maximum at C23 (160 mg/g). Mound No. 8 was inactive and contained 148 mg/g of aliphatic C22-C34 n-alkanes, with a maximum at C25. Mound No. 8 also consisted of 3% inorganic matter, 48% unresolved complex mixture (UCM) and less than 1% other compounds (polyaromatic hydrocarbons, isoprenoids, carotenoids, and hopanes). The core of this sample used as inoculate, yielded Rhodococci when cultivated on oil as the only source of carbon. Cultivation of the sample on agar-containing Raymond inorganic medium with crude West Siberian oil as the only source of carbon revealed colonies of these bacteria, which all appeared identical. PCR was performed with DNA isolated from 5 colonies, using primers for 16S rRNA genes. Comparison of the sequences of the 5 PCR products over a length of 714 bp revealed that they were almost identical. Phylogenetic analysis of these homologous sequences showed that they were similar to the corresponding sequences of the genus Rhodococcus. Substrate demands, the morphology of the colonies, and SEM and TEM data confirmed that the isolates obtained could indeed be Rhodococci. All of the isolates could grow in bulk cultures with inorganic medium supplemented with crude oil. Moreover, all of the isolates degraded aliphatic hydrocarbons with lengths between C11 and C29. C23-C29 hydrocarbons were degraded completely. The isolates could grow at 4–37°C. The most unexpected finding was that of the many microorganisms capable of consuming oil, only Rhodococci exhibited this ability in the inactive bitumen mound. The possible mechanisms of how crude oil is transformed into bitumen mounds and mature bitumen are discussed.  相似文献   
180.
Fungal degradation of low rank coal has appeared as an alternative technique for exploitation of non-fuel options. A fungal isolate, MW1, was isolated and coal sample was subjected to fungal pretreatment. The residual coal was processed for extraction of humic acid for determining the effect of such pretreatment. Extracted humic acid was analyzed on the basis of elemental composition and spectroscopy. Fungal pretreatment caused improvement in oxygen content, E4/E6 ratio, and absorption bands related to humic materials. Conclusively, pretreatment resulted in improving chemical attributes of humic acid molecule, thus, warranting supplementary high-tech investigations for the optimization of process upscale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号