首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4179篇
  免费   279篇
  国内免费   537篇
  2024年   10篇
  2023年   122篇
  2022年   118篇
  2021年   161篇
  2020年   175篇
  2019年   146篇
  2018年   141篇
  2017年   156篇
  2016年   147篇
  2015年   159篇
  2014年   205篇
  2013年   353篇
  2012年   145篇
  2011年   200篇
  2010年   150篇
  2009年   211篇
  2008年   226篇
  2007年   201篇
  2006年   178篇
  2005年   179篇
  2004年   138篇
  2003年   142篇
  2002年   119篇
  2001年   88篇
  2000年   87篇
  1999年   93篇
  1998年   77篇
  1997年   78篇
  1996年   61篇
  1995年   78篇
  1994年   54篇
  1993年   56篇
  1992年   55篇
  1991年   37篇
  1990年   54篇
  1989年   29篇
  1988年   35篇
  1987年   32篇
  1986年   39篇
  1985年   43篇
  1984年   51篇
  1983年   36篇
  1982年   43篇
  1981年   21篇
  1980年   21篇
  1979年   14篇
  1978年   4篇
  1977年   8篇
  1976年   8篇
  1974年   5篇
排序方式: 共有4995条查询结果,搜索用时 672 毫秒
11.
Avian progesterone receptor exists as two forms, A and B, with molecular weights of 79,000 and 110,000 daltons, respectively. The origin and significance of these two forms is an area of active investigation and debate. Monoclonal antibodies produced against these two forms were used to examine receptor stability in cytosol and changes in the receptor forms induced by hormone binding. The lability of hormone binding at elevated temperatures is well documented. Analysis by Western blotting showed the receptor was stable in freshly prepared oviduct cytosol for 2 hr at 37°C, while hormone binding was lost within 30 min. However, loss of receptor through degradation was seen when cytosol was prepared from frozen tissue or when homogenization was excessive. Progesterone was injected into diethylstilbestrol-stimulated chicks to examine, in vivo, effects of hormone treatment on receptor forms in the cytosol and nuclear fractions. Progesterone treatment caused a time- and dose-dependent conversion of the A receptor to a form (A′) with a slower electrophoretic mobility. The cytosolic progesterone receptor was divided equally between the B and A forms, while the nuclear receptor was predominantly A′. The amount of nuclear receptor was consistently less than cytosolic receptor. Receptor phosphorylation was analyzed by incubating tissue minces with [32P]orthophosphate with or without progesterone followed by immune isolation of receptor forms. Progesterone treatment caused a time-dependent increase in cytosol receptor phosphorylation which was evident after 5 min of treatment. This phosphorylation was observed with both the A and B receptor forms. The results indicate that receptor phosphorylation is a very early event during progesterone action.  相似文献   
12.
13.
Summary There is a protease, which is activated by Ca2+ (about 100 M), works at neutral pH and exists in the cytoplasm inChara australis. This protease may correspond to calpain, the calcium-activated neutral protease, which has been studied in animal cells. This is the first report showing the existence of a calcium-activated protease in plant cells.  相似文献   
14.
From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.  相似文献   
15.
Extracts of denitrifying bacteria grown anaerobically with phenol and nitrate catalyzed an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate. This exchange reaction is ascribed to a novel enzyme, phenol carboxylase, initiating the anaerobic degradation of phenol by para-carboxylation to 4-hydroxybenzoate. Some properties of this enzyme were determined by studying the isotope exchange reaction. Phenol carboxylase was rapidly inactivated by oxygen; strictly anoxic conditions were essential for preserving enzyme activity. The exchange reaction specifically was catalyzed with 4-hydroxybenzoate but not with other aromatic acids. Only the carboxyl group was exchanged; [U-14C]phenol was not exchanged with the aromatic ring of 4-hydroxybenzoate. Exchange activity depended on Mn2+ and inorganic phosphate and was not inhibited by avidin. Ortho-phosphate could not be substituted by organic phosphates nor by inorganic anions; arsenate had no effect. The pH optimum was between pH 6.5–7.0. The specific activity was 100 nmol 14CO2 exchange · min-1 · mg-1 protein. Phenol grown cells contained 4-hydroxybenzoyl CoA synthetase activity (40 nmol · min-1 · mg-1 protein). The possible role of phenol carboxylase and 4-hydroxybenzoyl CoA synthetase in anaerobic phenol metabolism is discussed.  相似文献   
16.
The pathway for the aerobic catabolism of 1,3,5-trihydroxybenzene (phloroglucinol) by a new strain of Penicillium was investigated using both in vivo and in vitro cell-free systems. The fungal strain was isolated by enrichment on phloroglucinol and identified as P. simplicissimum (Oud) Thom. It grew optimally at pH 5.5 and 27°C with 119 mM (1.5%w/v) of phloroglucinol in a basal mineral salts medium. Vapours of the crystalline substrate placed in a Petri-plate lid supported the growth of the fungal colonies on the agar surface. Mycelia grown on phloroglucinol accumulated 1,2,4-trihydroxybenzene and resorcinol in the medium. Washed, resting mycelia grown on phloroglucinol, when resuspended in a buffer utilized oxygen in the presence of catechol, resorcinol, pyrogallol and phloroglucinol. A NADPH-dependent reductase in the cell-free extract reduced phloroglucinol to dihydrophloroglucinol. This electron donor could not be replaced by NADH. Resorcinol hydroxylase, phloroglucinol reductase, catechol-1,2-oxygenase, and catechol-2,3-oxygenase were detected in cell-free extracts of mycelia grown on phloroglucinol. The possible steps in the degradation of phloroglucinol are discussed.  相似文献   
17.
A strain of Pseudomonas putida was isolated that was able to degrade 2-chloroethanol. The degradation proceeded via 2-chloroacetaldehyde and chloroacetate to glycolate. In crude extracts the enzymes for this degradation pathway could be detected. All enzymes proved to be inducible. The dehalogenase that catalyzed the dehalogenation of chloroacetate to glycolate was further characterized. It consisted of a single polypeptide chain with a molecular mass of 28 kDa. After induction the dehalogenase was expressed at a high level. In a mutant resistant to high concentrations of 2-chloroethanol the dehalogenase was no longer expressed. The mechanism of resistance seemed to be due to the inability to convert chloroacetate and export of this compound out of the cell.Non-standard abbreviations CEO 2-chloroethanol - DCPIP 2,6-dichlorophenolindophenol - FPLC fast protein liquid chromatography - PAGE polyacrylamide gelelectrophoresis - PES phenazine ethosulfate - PMS phenazine methosulfate - PQQ pyrroloquinoline quinone  相似文献   
18.
Strain DCB-1 is a strict anaerobe capable of the reductive dechlorination of chlorobenzoates. The effect of dechlorination on the yield of pure cultures of DCB-1 was tested. Cultures were incubated with formate or H2 as electron donors and CO2 as a putative carbon source. Relative to control cultures with benzoate, cultures which dechlorinated 3-chlorobenzoate and 3,5-dichlorobenzoate had higher yields measured both as protein and cell density. On the media tested the apparent growth yield was 1.7 to 3.4 g cell protein per mole Cl- removed. Dechlorination also stimulated formate oxidation by growing cultures. Resuspended cells required an electron donor for dechlorination activity, with either formate or elemental iron serving this function. Resuspended cells did not require an electron acceptor for formate consumption, but reductive dechlorination of 3CB to benzoate stoichiometrically stimulated oxidation of formate to CO2. These results indicate that DCB-1 conserves energy for growth by coupling formate, and probably, H2 oxidation to reductive dechlorination.Non-standard abbreviations 3CB 3-chlorobenzoate - 35DCB 3,5-dichlorobenzoate - PCF Propionibacterium sp. culture fluid  相似文献   
19.
Abstract The capability of secreting thermoactive enzymes exhibiting α-amylase and pullulanase with debraching activity, seems to be widely distributed amongst anaerobic thermophilic bacteria. Interestingly, pullulanase formed by these bacteria displays dual specificity by attacking α-1,6- as well as α-1,4-glycosidic linkages in branched glucose polymers. Unlike the enzyme system of aerobic microorganisms the majority of starch hydrolysing enzymes of anaerobic bacteria is metal indepedent and is extremely thermostable. This enzyme system is controlled by substrate induction and catabolite repression; enzyme expression is accomplished when maltose or maltose-containing carbohydrates are used as substrates. By developing a process in continuous culture we were able to greatly enhance enzyme synthesis and release by anaerobic thermophilic bacteria. An elevation in the specific activities of cell-free amylases and pullulanases could also be achieved by entrapping of bacteria in calcium alginate beads. The unique properties of extracellular enzymes of thermophilic anaerobic bacteria makes this group of organisms suitable candidates for inductrial application.  相似文献   
20.
Microbial growth on water-insoluble carbon sources such as hydrocarbons is accompanied by metabolic and structural alterations of the cell. The appearance of surface-active compounds (biosurfactants) in the culture medium or attached to the cell boundaries is often regarded as a prerequisite for initial interactions of hydrocarbons with the microbial cell. Under this point of view, biosurfactants produced by hydrocarbon-utilizing microorganisms, their structures and physico-chemical properties are reviewed. The production of such compounds is mostly connected with growth limitation in the late logarithmic and the stationary growth phase, in which specific enzymes are induced or derepressed. Addition of purified biosurfactants to microbial cultures resulted in inhibitory as well as in stimulatory effects on growth. Therefore, a more differentiated view of microbial production of surface-active compounds is proposed. Biosurfactants should not only be regarded as prerequisites of hydrocarbon uptake, but also as secondary metabolic products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号