全文获取类型
收费全文 | 3445篇 |
免费 | 267篇 |
国内免费 | 181篇 |
专业分类
3893篇 |
出版年
2024年 | 11篇 |
2023年 | 123篇 |
2022年 | 127篇 |
2021年 | 196篇 |
2020年 | 132篇 |
2019年 | 144篇 |
2018年 | 115篇 |
2017年 | 88篇 |
2016年 | 86篇 |
2015年 | 140篇 |
2014年 | 227篇 |
2013年 | 226篇 |
2012年 | 124篇 |
2011年 | 153篇 |
2010年 | 163篇 |
2009年 | 161篇 |
2008年 | 189篇 |
2007年 | 173篇 |
2006年 | 166篇 |
2005年 | 145篇 |
2004年 | 157篇 |
2003年 | 131篇 |
2002年 | 87篇 |
2001年 | 82篇 |
2000年 | 45篇 |
1999年 | 57篇 |
1998年 | 57篇 |
1997年 | 37篇 |
1996年 | 44篇 |
1995年 | 46篇 |
1994年 | 27篇 |
1993年 | 50篇 |
1992年 | 29篇 |
1991年 | 17篇 |
1990年 | 12篇 |
1989年 | 12篇 |
1988年 | 16篇 |
1987年 | 8篇 |
1986年 | 11篇 |
1985年 | 13篇 |
1984年 | 8篇 |
1983年 | 8篇 |
1982年 | 16篇 |
1981年 | 5篇 |
1980年 | 9篇 |
1979年 | 4篇 |
1978年 | 5篇 |
1977年 | 3篇 |
1976年 | 3篇 |
1974年 | 4篇 |
排序方式: 共有3893条查询结果,搜索用时 15 毫秒
11.
12.
Hans Thoenen Christine Bandtlow Rolf Heumann Dan Lindholm Michael Meyer Hermann Rohrer 《Cellular and molecular neurobiology》1988,8(1):35-40
1. The role of nerve growth factor (NGF) as a retrograde messenger between peripheral target tissues and innervating sympathetic and neural crest-derived sensory neurons is supported by the observations that (a) the interruption of retrograde axonal transport has the same effects as the neutralization of endogenous NGF by anti-NGF antibodies and (b) the close correlation between the density of innervation by fibers of NGF-responsive neurons and the levels of NGF and mRNANGF in their target organs. 2. In situ hybridization experiments have demonstrated that a great variety of cells in the projection field or NGF-responsive neurons is synthesizing NGF, among them epithelial cells, smooth muscle cells, fibroblasts, and Schwann cells. 3. The temporal correlation between the growth of trigeminal sensory fibers into the whisker pad of the mouse and the commencement of NGF synthesis initially suggested a causal relationship between these two events. However, in chick embryos rendered aneural by prior removal of the neural tube or the neural crest, it was shown that the onset of NGF synthesis in the periphery is independent of neurons, and is controlled by an endogenous "clock" whose regulatory mechanism remains to be established. 4. A comparison between NGF synthesis in the nonneuronal cells of the newborn rat sciatic nerve and that in the adult sciatic nerve after lesion provided evidence for the important regulatory role played by a secretory product of activated macrophages. The identity of this product is currently under investigation. 相似文献
13.
The Notch signaling pathway plays a critical role during mammalian development. To bypass embryonic lethality associated with constitutive Notch1 signaling, we created transgenic mice with a floxed beta-geo/stop signal between a cytomegalo virus promoter and the constitutively active intracellular domain of Notch1 (IC-Notch1). IC-Notch1 is activated upon introduction of Cre recombinase and it is coexpressed with an enhanced green fluorescent protein or human placental alkaline phosphatase reporter. We created three IC-Notch1 transgenic mouse lines and crossed them to a general Cre deletor mouse line, pCX-Cre. The double transgenic IC-Notch1/pCX-Cre embryos have widespread expression of IC-Notch1 and reporters and die before 10.5 days of gestation. Morphological and histological analysis of the double transgenic embryos indicated growth arrest and various developmental defects, including lack of neural tube closure, disorganized somites, and disrupted vasculature. The conditional IC-Notch1 expressing transgenic mice provide a unique tool to investigate the Notch pathway using tissue-specific Cre mice and inducible Cre systems. 相似文献
14.
Mariana Babo-Rebelo Nicolai Wolpert Claude Adam Dominique Hasboun Catherine Tallon-Baudry 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1708)
The self has been proposed to be rooted in the neural monitoring of internal bodily signals and might thus involve interoceptive areas, notably the right anterior insula (rAI). However, studies on the self consistently showed the involvement of midline default network (DN) nodes, without referring to visceral monitoring. Here, we investigate this apparent discrepancy. We previously showed that neural responses to heartbeats in the DN encode two different self-dimensions, the agentive ‘I’ and the introspective ‘Me’, in a whole-brain analysis of magnetoencephalography (MEG) data. Here, we confirm and anatomically refine this result with intracranial recordings (intracranial electroencephalography, iEEG). In two patients, we show a parametric modulation of neural responses to heartbeats by the self-relatedness of thoughts, at the single trial level. A region-of-interest analysis of the insula reveals that MEG responses to heartbeats in the rAI encode the ‘I’ self-dimension. The effect in rAI was weaker than in the DN and was replicated in iEEG data in one patient out of two. We propose that a common mechanism, the neural monitoring of cardiac signals, underlies the self in both the DN and rAI. This might reconcile studies on the self highlighting the DN, with studies on interoception focusing on the insula.This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’. 相似文献
15.
Corneal keratocytes have a remarkable ability to heal the cornea throughout life. Given their developmental origin from the cranial neural crest, we asked whether this regenerative ability was related to the stem cell-like properties of their neural crest precursors. To this end, we challenged corneal stromal keratocytes by injecting them into a new environment along cranial neural crest migratory pathways. The results show that injected stromal keratocytes change their phenotype, proliferate and migrate ventrally adjacent to host neural crest cells. They then contribute to the corneal endothelial and stromal layers, the musculature of the eye, mandibular process, blood vessels and cardiac cushion tissue of the host. However, they fail to form neurons in cranial ganglia or branchial arch cartilage, illustrating that they are at least partially restricted progenitors rather than stem cells. The data show that, even at late embryonic stages, corneal keratocytes are not terminally differentiated, but maintain plasticity and multipotentiality, contributing to non-neuronal cranial neural crest derivatives. 相似文献
16.
L. C. Triarhou E. H. Stotz W. C. Low J. Norton B. Ghetti B. Landwehrmeyer J. M. Palacios J. R. Simon 《Neurochemical research》1994,19(11):1349-1358
The dopamine (DA) uptake system was investigated in the mesostriatal system of normal and weaver mutant mice, which lose mesencephalic DA neurons, as well as in weaver mutants with ventral mesencephalic grafts to the striatum. Assays of [3H]DA uptake in striatal synaptosomal fractions in vitro and autoradiography of [3H]mazindol binding in brain sections were carried out in wild-type mice (+/+) and in the two hemispheres of homozygous weaver mutants (wv/wv) that had received unilateral grafts of mesencephalic cell suspensions to the right side. Net [3H]DA uptake, expressed as pmol/mg-protein/2-min, was on the average 50.6 in the striatum of wild-type mice, 7.9 in the non-grafted, and 10.1 in the transplanted striatum of weaver mutants. [3]DA uptake in wild-type mice differed significantly from both the grafted and non-grafted weaver striata (P<0.001). Paired comparisons for [3H]DA uptake between right and left sides of recipient weaver mice showed a significant side effect (P<0.02), the right side being 28–38% higher than the left side [mean of all individual (R-L)/L values]. The results of amphetamine-induced turning behavior tests were compared with the biochemical findings. Mice with grafts to the right side rotated an average of 22 turns to the left and 7 turns to the right during the five one-minute sessions; the mean value L/(L+R) was 64%. A plot of (L-R) rotations against (R-L) [3H]DA uptake gave a correlation coefficient of 0.552 (P<0.05), indicating that animals with a strong rotational bias to the left tended to have higher [3H]DA on the right. Similarly, the animals that were used for [3H]mazindol binding autoradiographic studies displayed on the average 72% rotations to the left side. In the [3H]mazindol binding data, non-grafted weaver mutants showed the severest depletion relative to wild-type in the dorsomedial and dorsolateral caudate-putamen (86% and 87%, respectively). Mice with unilateral grafts to the right side showed an increase in [3H]mazindol binding signal in the transplanted side of 40–64% (depending on dorsoventral topography) over the contralateral, non-grafted side. These findings attest to the functional effects of the grafts at the anatomical, biochemical, and behavioral levels. The parallel measurements of motor performance and DA uptake in the same animals offers an index of behavioral recovery as a function of transmitter-related activity. Furthermore, by conducting measurements of the synaptosomal DA uptake in vitro and of the binding characteristics of mazindol in brain slices by autoradiography, one has the advantage of combining the anatomical resolution of uptake site visualization with a dynamic indicator of function for DA uptake in the nerve terminal.Special issue dedicated to Professor Sidney Ochs 相似文献
17.
Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites 总被引:27,自引:0,他引:27
O-GalNAc-glycosylation is one of the main types of glycosylation in mammalian cells. No consensus recognition sequence for the O-glycosyltransferases is known, making prediction methods necessary to bridge the gap between the large number of known protein sequences and the small number of proteins experimentally investigated with regard to glycosylation status. From O-GLYCBASE a total of 86 mammalian proteins experimentally investigated for in vivo O-GalNAc sites were extracted. Mammalian protein homolog comparisons showed that a glycosylated serine or threonine is less likely to be precisely conserved than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines predictions from the best overall network and the best isolated site network; this prediction method correctly predicted 76% of the glycosylated residues and 93% of the nonglycosylated residues. NetOGlyc 3.1 can predict sites for completely new proteins without losing its performance. The fact that the sites could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc. 相似文献
18.
The neural crest is a transient population of migratory cells that differentiates to form a variety of cell types in the vertebrate embryo, including melanocytes, the craniofacial skeleton, and portions of the peripheral nervous system. These cells initially exist as adherent epithelial cells in the dorsal aspect of the neural tube and only later become migratory after an epithelial-to-mesenchymal transition (EMT). Snail2 plays a critical role in mediating chick neural crest cell EMT and migration due to its expression by both premigratory and migratory cranial neural crest cells and its ability to down-regulate intercellular junctions components. In an attempt to delineate the role of cellular junction components in the neural crest, we have identified the adherens junction molecule neural alpha-catenin (αN-catenin) as a Snail2 target gene whose repression is critical for chick neural crest cell migration. Knock-down and overexpression of αN-catenin enhances and inhibits neural crest cell migration, respectively. Furthermore, our results reveal that αN-catenin regulates the appropriate movement of neural crest cells away from the neural tube into the embryo. Collectively, our data point to a novel function of an adherens junction protein in facilitating the proper migration of neural crest cells during the development of the vertebrate embryo. 相似文献
19.
Jutta Kretzberg Anne-Kathrin Warzecha Martin Egelhaaf 《Journal of computational neuroscience》2001,11(2):153-164
The neural encoding of sensory stimuli is usually investigated for spike responses, although many neurons are known to convey information by graded membrane potential changes. We compare by model simulations how well different dynamical stimuli can be discriminated on the basis of spiking or graded responses. Although a continuously varying membrane potential contains more information than binary spike trains, we find situations where different stimuli can be better discriminated on the basis of spike responses than on the basis of graded responses. Spikes can be superior to graded membrane potential fluctuations if spikes sharpen the temporal structure of neuronal responses by amplifying fast transients of the membrane potential. Such fast membrane potential changes can be induced deterministically by the stimulus or can be due to membrane potential noise that is influenced in its statistical properties by the stimulus. The graded response mode is superior for discrimination between stimuli on a fine time scale. 相似文献
20.
Noriaki Sasai Shogo Tada Jumi Ohshiro Chikara Kogiso Takuma Shinozuka 《Development, growth & differentiation》2024,66(1):89-100
During development, progenitor cell survival is essential for proper tissue functions, but the underlying mechanisms are not fully understood. Here we show that ERCC6L2, a member of the Snf2 family of helicase-like proteins, plays an essential role in the survival of developing chick neural cells. ERCC6L2 expression is induced by the Sonic Hedgehog (Shh) signaling molecule by a mechanism similar to that of the known Shh target genes Ptch1 and Gli1. ERCC6L2 blocks programmed cell death induced by Shh inhibition and this inhibition is independent of neural tube patterning. ERCC6L2 knockdown by siRNA resulted in the aberrant appearance of apoptotic cells. Furthermore, ERCC6L2 cooperates with the Shh signal and plays an essential role in the induction of the anti-apoptotic factor Bcl-2. Taken together, ERCC6L2 acts as a key factor in ensuring the survival of neural progenitor cells. 相似文献