首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2355篇
  免费   116篇
  国内免费   64篇
  2535篇
  2024年   7篇
  2023年   31篇
  2022年   36篇
  2021年   33篇
  2020年   55篇
  2019年   66篇
  2018年   72篇
  2017年   41篇
  2016年   63篇
  2015年   58篇
  2014年   121篇
  2013年   181篇
  2012年   88篇
  2011年   170篇
  2010年   111篇
  2009年   158篇
  2008年   161篇
  2007年   147篇
  2006年   131篇
  2005年   106篇
  2004年   104篇
  2003年   64篇
  2002年   70篇
  2001年   40篇
  2000年   37篇
  1999年   29篇
  1998年   25篇
  1997年   25篇
  1996年   17篇
  1995年   30篇
  1994年   22篇
  1993年   15篇
  1992年   15篇
  1991年   8篇
  1990年   16篇
  1989年   9篇
  1988年   9篇
  1987年   12篇
  1986年   8篇
  1985年   23篇
  1984年   29篇
  1983年   10篇
  1982年   20篇
  1981年   6篇
  1980年   11篇
  1979年   19篇
  1978年   7篇
  1977年   6篇
  1976年   6篇
  1973年   3篇
排序方式: 共有2535条查询结果,搜索用时 0 毫秒
131.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   
132.
Previously, we showed that inoculation of tobacco with Pseudomonas syringae incompatible pv. maculicola results in a rapid and persistent burst of superoxide (O2) from mitochondria, no change in amount of mitochondrial alternative oxidase (AOX) and induction of the hypersensitive response (HR). However, inoculation with incompatible pv. phaseolicola resulted in increased AOX, no O2 burst and no HR. Here, we show that in transgenic plants unable to induce AOX in response to pv. phaseolicola, there is now a strong mitochondrial O2 burst, similar to that normally seen only with pv. maculicola. This interaction did not however result in a HR. This indicates that AOX amount is a key determinant of the mitochondrial O2 burst but also that the burst itself is not sufficient to induce the HR. Surprisingly, the O2 burst normally seen towards pv. maculicola is delayed in plants lacking AOX. This delay is associated with a delayed HR, suggesting that the burst does promote the HR. A O2 burst can also be induced by the complex III inhibitor antimycin A (AA), but is again delayed in plants lacking AOX. The similar mitochondrial response induced by pv. maculicola and AA suggests that electron transport is a target during HR‐inducing biotic interactions.  相似文献   
133.
134.
Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest.  相似文献   
135.
136.
The DNA-dependent RNA polymerases of Schneider 2-L cells of Drosophila melanogaster are described. These cells contain five readily detectable forms of this enzyme, polymerases Ia, Ib, IIIa, II, and IIIb, which elute from DEAE-Sephadex at 0.08, 0.12, 0.15, 0.20, and 0.22 m ammonium sulfate, respectively. RNA polymerases IIIa and IIIb, which each constitute about 5–10% of the total RNA polymerase activity in Drosophila embryos, are found to constitute 30 and 10%, respectively, of the total polymerase activity in cultured cells. The two form III polymerases are further characterized by in vitro response to divalent cations and ionic strength, template utilization, and sensitivity to -amanitin. Verification of the class III designation of these two polymerases is provided by their sensitivity to only very high levels of -amanitin (50% inhibition at approximately 800 µg/ml), their 10-fold greater activity on poly[d(A–T)], and their elution from DEAE-cellulose at lower ionic strengths than from DEAE-Sephadex.This work was supported by the Natural Sciences and Engineering Research Council.  相似文献   
137.
Collagen is one of the most abundant and important proteins in the human body. Human collagen type III (hCOL3A1) belongs to the fibril-forming collagens and is widely distributed in extensible connective tissue like skin, internal organs, or the vascular system. It plays key roles in wound healing, collagen fibrillogenesis, and normal cardiovascular development in human. The charged residues are considered to be an important characteristic of hCOL3A1, especially for collagen binding and recognition. Here we found that a triple helix fragment of hCOL3A1, Gly489-Gly510, contained multiple charged residues, as well as representative Glu-Lys-Gly and Glu-Arg-Gly charged triplets. We solved the crystal structure of this new fragment to a high-resolution of 1.50?Å and identified some important conformations of this new triple-helix region, including strong hydrogen bonds in interchain and interhelical interactions in addition to obvious flexible bending for the triple helix. We also found that the synthetic collagen peptides around this region exhibited potent activities through integrin-mediated peptide-membrane interaction. We then developed a method to produce a recombinant protein consisting of 16 tandem repeats of the triple-helix fragment of hCOL3A1 with strong activity without cytotoxicity. These results provide a strong base for further functional studies of human collagen type III and the method developed in this study can be applied to produce hCOL3A1-derived proteins or other tandem-repeat proteins with membrane adhesion activity.  相似文献   
138.
The Beclin1–VPS34 complex is recognized as a central node in regulating autophagy via interacting with diverse molecules such as ATG14L for autophagy initiation and UVRAG for autophagosome maturation. However, the underlying molecular mechanism that coordinates the timely activation of VPS34 complex is poorly understood. Here, we identify that PAQR3 governs the preferential formation and activation of ATG14L‐linked VPS34 complex for autophagy initiation via two levels of regulation. Firstly, PAQR3 functions as a scaffold protein that facilitates the formation of ATG14L‐ but not UVRAG‐linked VPS34 complex, leading to elevated capacity of PI(3)P generation ahead of starvation signals. Secondly, AMPK phosphorylates PAQR3 at threonine 32 and switches on PI(3)P production to initiate autophagosome formation swiftly after glucose starvation. Deletion of PAQR3 leads to reduction of exercise‐induced autophagy in mice, accompanied by a certain degree of disaggregation of ATG14L‐associated VPS34 complex. Together, this study uncovers that PAQR3 can not only enhance the capacity of pro‐autophagy class III PI3K due to its scaffold function, but also integrate AMPK signal to activation of ATG14L‐linked VPS34 complex upon glucose starvation.  相似文献   
139.
140.
Dopamine has been implicated in the regulation of sleep–wake states and the circadian rhythm. However, there is no consensus on the impact of two established dopaminergic gene variants: the catechol-O-methyltransferase Val158Met (COMT Val158Met; rs4680) and the dopamine D4 receptor Exon III variable-number-of-tandem-repeat polymorphism (DRD4 VNTR). Pursuing a multi-method approach, we examined their potential effects on circadian preferences, arousal regulation and sleep. Subjects underwent a 7-day actigraphy assessment (SenseWear Pro3), a 20-minute resting EEG (analyzed using VIGALL 2.0) and a body mass index (BMI) assessment. Further, they completed the Morningness–Eveningness Questionnaire (MEQ), the Epworth Sleepiness Scale (ESS) and the Pittsburgh Sleep Quality Index (PSQI). The sample comprised 4625 subjects (19–82 years) genotyped for COMT Val158Met, and 689 elderly subjects (64–82 years) genotyped for DRD4 VNTR. The number of subjects varied across phenotypes. Power calculations revealed a minimum required phenotypic variance explained by genotype ranging between 0.5% and 1.5% for COMT Val158Met and between 3.3% and 6.0% for DRD4 VNTR. Analyses did not reveal significant genotype effects on MEQ, ESS, PSQI, BMI, actigraphy and EEG variables. Additionally, we found no compelling evidence in sex- and age-stratified subsamples. Few associations surpassed the threshold of nominal significance (p < .05), providing some indication for a link between DRD4 VNTR and daytime sleepiness. Taken together, in light of the statistical power obtained in the present study, our data particularly suggest no impact of the COMT Val158Met polymorphism on circadian preferences, arousal regulation and sleep. The suggestive link between DRD4 VNTR and daytime sleepiness, on the other hand, might be worth investigation in a sample enriched with younger adults.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号