首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3006篇
  免费   205篇
  国内免费   155篇
  2023年   45篇
  2022年   41篇
  2021年   69篇
  2020年   82篇
  2019年   132篇
  2018年   92篇
  2017年   62篇
  2016年   62篇
  2015年   85篇
  2014年   135篇
  2013年   161篇
  2012年   124篇
  2011年   123篇
  2010年   95篇
  2009年   136篇
  2008年   125篇
  2007年   151篇
  2006年   163篇
  2005年   141篇
  2004年   111篇
  2003年   115篇
  2002年   91篇
  2001年   76篇
  2000年   68篇
  1999年   72篇
  1998年   66篇
  1997年   58篇
  1996年   65篇
  1995年   54篇
  1994年   57篇
  1993年   72篇
  1992年   50篇
  1991年   37篇
  1990年   35篇
  1989年   33篇
  1988年   31篇
  1987年   25篇
  1986年   28篇
  1985年   23篇
  1984年   48篇
  1983年   17篇
  1982年   16篇
  1981年   20篇
  1980年   20篇
  1979年   16篇
  1978年   6篇
  1977年   8篇
  1976年   6篇
  1974年   5篇
  1972年   5篇
排序方式: 共有3366条查询结果,搜索用时 15 毫秒
931.
Abstract: The effect of heat shock on agonist-stimulated intracellular Ca2+ mobilization and the expression of heat shock protein 72 (hsp72) in neuroblastoma × glioma hybrid cells (NG 108–15 cells) were examined. Hsp72 was expressed at 6 h after heat shock (42.5°C, 2 h), reached a maximum at 12 h, and decreased thereafter. Bradykinin-induced [Ca2+], rise was attenuated to 28% of control by heat shock at 2 h after heat shock, and reversion to the control level was seen 12 h later. When the cells were treated with quercetin or antisense oligodeoxyribonucleotide against hsp72 cDNA, the synthesis of hsp72 was not induced by heat shock, whereas bradykinin-induced [Ca2+]i rise was abolished and the [Ca2+]i rise was not restored. Recovery from this stressed condition was evident when cells were stimulated by the Ca2+-ATPase inhibitor thapsigargin, even in the presence of either quercetin or antisense oligodeoxyribonucleotide. Inositol 1,4,5-trisphosphate (IP3) production was not altered by heat shock at 12 h after heat shock, whereas IP3 receptor binding activity was reduced to 45.3%. In the presence of quercetin or antisense oligodeoxyribonucleotide, IP3 receptor binding activity decreased and reached 27.2% of the control 12 h after heat shock. Our working thesis is that heat shock transiently suppresses the IPs-mediated intracellular Ca2+ signal transduction system and that hsp72 is involved in the recovery of bradykinin-induced [Ca2+]i rise.  相似文献   
932.
We investigated whether six arctic plant species have the potential to induce nitrate reductase (NR) activity when exposed to NO3 --nitrogen under controlled environment conditions, using an in vivo assay that uses the rate of NO2 --accumulation to estimate potential NR activity. We also assessed the effect of low root temperatures on NR activity, growth and nitrogen uptake (using 15N applications) in two of the selected species. Five of the six species (Cerastium alpinum, Dryas intergrifolia, Oxyria digyna, Saxifraga cernua and Salix arctica) were capable of inducing NR activity when exposed to solutions containing 0.5 mM NO3 - at 20°C for 10 days. Although in vivo NR activity was not induced in Saxifraga oppositifolia under controlled conditions, we conclude that it was capable of growing successfully on NO3 -, due to the presence of moderate rates of NR activity observed in both NH4 +-grown and NO3 --treated plants. Exposure of O. digyna and D. integrifolia to 3°C root temperatures for two weeks, with the shoots kept at 20°C, resulted in root and leaf NR activity rates of NO3 --treated plants being reduced to rates exhibited by NH4 +-grown plants. Although these decreases in NR in both species appeared to be due to limitations in NO3 --uptake and growth rate (rather than direct low-temperature inhibition of NR synthesis per se), direct low-temperature inhibition of root NR synthesis could not be ruled out. In contrast to the temperature insensitivity of NH4 + uptake in D. integrifolia, NO3 --uptake in D. integrifolia was inhibited by low root temperatures. We conclude that the selected arctic species have the genetic potential to utilize NO3 --nitrogen, and that low root temperatures, in conjunction with other environmental limitations, may be responsible for the lack of induction of NR in D. integrifolia and Salix arctica under field conditions.  相似文献   
933.
Vos  G. J. M.  Bergevoet  I. M. J.  Védy  J. C.  Neyroud  J. A. 《Plant and Soil》1994,160(2):201-213
A field experiment was carried out at a pilot plot that was cropped with oilseed rape, and then left partly fallow and partly cropped with a green manure (mustard) during the autumn after harvest of the oilseed rape. The rape residues were incorporated in the soil. Methods used to quantify the N fluxes from harvest until sowing of the next crop were (1) 15N balance method, (2) total mineral N analysis and (3) NO emission measurements. Losses of spring applied fertilizer N were negligible in cropped plots and minimal in fallow plots during the following autumn-winter period. Most of the plant-N residues was retained by the organic N pool of the upper 30-cm soil layer. The green manure contributed slightly to soil available N at sowing of the next crop. However, the incorporation of plant material resulted in a nitrate flux that was at risk of leaching on the fallow plots, and on the green manure plots after incorporation of the green manure. This nitrate was largely derived from soil organic N, not from unused fertilizer applied in spring or from immobilized fertilizer. The NO emissions from the green manure plots were significantly higher than emissions from the fallow plots. The plants had a stimulating effect on the NO emission. A relationship between the NO emission and the soil nitrate concentration could not be established. No emissions were measured after green manure incorporation due to the low temperatures at the pilot plot. However, a greenhouse experiment showed an increased emission after incorporation. The NO emissions seemed to be related with the soil ammonium concentration.  相似文献   
934.
A field experiment was conducted at the Coconut Research Institute in Sri Lanka to examine the biological nitrogen fixation potential of three Gliricidia sepium provenances (OFI 14/84, 17/84, 12/86) and a local landrace (designated LL), using the 15N isotope dilution method. There was marked variation in dry matter, total N, nodulation and 15N enrichment among the Gliricidia genotypes (=0.001), and the dry matter yield of Cassia siamea (syn. Senna siamea), the non-N2 fixing reference plant was higher than for G. sepium. In all cases, highest biomass and total N were aboveground, with roots on average accounting for < 20 % of total dry matter or the total N in plants. Atom % 15N excess was highest in C. siamea, and lowest in OFI 14/84. Although atom % 15N excess was lower in Gliricidia leaves than in the other organs (all of which had similar 15N enrichments), values of % N derived from atmospheric N2 fixation (% Ndfa) calculated for any individual organ or for the whole plant were similar. This was because the relative distribution of 15N in the different parts of the fixing plant followed the same trend as in the reference plant. There were significant differences (p=0.01) in N2 fixation between the Gliricidia genotypes. The values ranged from 17.8 g N tree-1 (equivalent to 86 kg N ha-1 at 5000 trees ha-1) in OFI 12/86 to 61.7g N tree-1 (equivalent to 309 kg N ha-1) in OFI 14/84. Although most of this variability was due to differences in both % Ndfa and total N in plant, amount of N fixed was more correlated with total N in plant (r=0.935) than with % Ndfa (r=0.707). On average, % Ndfa in all three G. sepium provenances and LL was about 55 % or 34.6 g N tree-1 (equivalent to some 166 kg N ha-1) in the 9 months within which N2 fixation was measured. This represents a substantial contribution of N into the soil-plant system.  相似文献   
935.
To examine the influence of plant-microorganism interactions on soil-N transformations (e.g. net mineralization, net immobilization) a pot experiment was conducted in a14C-labelled atmosphere by using different (two annuals, one perennial) plants species. It was assumed that variation in below-ground, microorganism-available C would influence N transformations in soil. Plant species were fertilized (low rate) with15N-labelled nitrogen and grown, during days 13 and 62 after germination, in a growth chamber with a14C-labelled atmosphere. Nitrification was inhibited by using nitrapyrin (N-Serve). During the chamber period, shoots were harvested, and associated roots and soil were collected on two sampling occasionm, e.g. after 4 and 7 weeks in the growth chamber.The distribution of net (%) assimilated14C was significantly affected by both plant and time factors, and there was a significant plant × time interaction. There were significant differences between plants in all plant-soil compartments examined as well as in the degree of the plant × time interaction.Differences in the14C distribution between plants were due to both interspecific and developmental variation. In general, when comparing15N and14C quantities between species, many of the differences found between plants can be explained by the differences determined in the weight of shoot or root parts. Despite the fact that amounts of C released were greater in ryegrass than in the other plant-treatments no unequivocal evidence was found to show that the effects of plant-microorganism interactions on soil-N mineralization were greater under ryegrass. Possible mechanisms accounting for the partitioning of N found among plant biomass, soil biomass and soil residues are discussed.  相似文献   
936.
The effect of inhibited bioenergetics and ATP depletion on membrane composition and fluidity was examined in cultured neuroblastoma-glioma hybrid NG108-15 cells. Sodium cyanide (CN) and 2-deoxyglucose (2-DG) were used to block oxidative phosphorylation and anaerobic glycolysis, respectively. Endoplasmic reticulum (ER) Ca2+-pump activity measured by45Ca2+ uptake was >92% inhibited in intact cells incubated with CN (1 mM) and 2-DG (20 mM) for 30 min. In addition, exposure of cells to CN and 2-DG caused a 134% increased release of isotopically labeled arachidonic acid (3H-AA) or arachidonate-derived metabolites from membranes. Removal of Ca2+ from the incubation medium ablated the CN/2-DG induced release of3H-AA or its metabolites. Membrane fluidity of intact cells was measured by electron spin resonance spectroscopy using the spin label 12-doxyl stearic acid. The mean rotational correlation time (c) of the spin label increased 49% in CN/2-DG exposed cells compared to controls, indicating a decrease in membrane fluidity. These results show that depletion of cellular ATP results in inhibition of the ER Ca2+-pump, loss of AA from membranes, and decreased membrane fluidity. We propose that impaired bioenergetics can increase intracellular Ca2+ as a result of Ca2+-pump inhibition and thereby activate Ca2+-dependent phospholipases causing membrane effects. Since neurons derive energy predominantly from oxidative metabolism, ATP depletion during brain hypoxia may initiate a similar cytotoxic mechanism.  相似文献   
937.
^15N标记稻草中N,C在羊体内的转化和利用   总被引:5,自引:1,他引:4  
应用~(13)N标记稻草饲喂3只山羊,以探明羊对稻草N、C化合物的消化、吸收、排泄和转化规律。结果表明,已宰杀的2只羊消化、吸收、转化为羊机体的~(15)N占试验日粮中~(15)N富集总量的38.54和23.78%,平均为31.16%。3只羊从粪尿中排泄的~(15)N各占饲料中~(15)N的34.78、33.88和33.18%,平均为33.95±0.80%,已屠宰的2只羊对饲料~(15)N总回收率为73.32和56.96%,损失率为26.68和43.04%。饲料~(15)N的回收利用率与饲料中氨基酸的消化率(%)相吻合。1、2、3号羊对饲料碳水化合物的消化率分别为76.40、68.66和65.19%。其中饲喂2、3号羊的饲料中都含稻草50%左右,羊对碳水化合物的平均消化率为66.93%。  相似文献   
938.
Deficiency in the conserved oligomeric Golgi (COG) complex that orchestrates SNARE-mediated tethering/fusion of vesicles that recycle the Golgi's glycosylation machinery results in severe glycosylation defects. Although two major Golgi v-SNAREs, GS28/GOSR1, and GS15/BET1L, are depleted in COG-deficient cells, the complete knockout of GS28 and GS15 only modestly affects Golgi glycosylation, indicating the existence of an adaptation mechanism in Golgi SNARE. Indeed, quantitative mass-spectrometry analysis of STX5-interacting proteins revealed two novel Golgi SNARE complexes—STX5/SNAP29/VAMP7 and STX5/VTI1B/STX8/YKT6. These complexes are present in wild-type cells, but their usage is significantly increased in both GS28- and COG-deficient cells. Upon GS28 deletion, SNAP29 increased its Golgi residency in a STX5-dependent manner. While STX5 depletion and Retro2-induced diversion from the Golgi severely affect protein glycosylation, GS28/SNAP29 and GS28/VTI1B double knockouts alter glycosylation similarly to GS28 KO, indicating that a single STX5-based SNARE complex is sufficient to support Golgi glycosylation. Importantly, co-depletion of three Golgi SNARE complexes in GS28/SNAP29/VTI1B TKO cells resulted in severe glycosylation defects and a reduced capacity for glycosylation enzyme retention at the Golgi. This study demonstrates the remarkable plasticity in SXT5-mediated membrane trafficking, uncovering a novel adaptive response to the failure of canonical intra-Golgi vesicle tethering/fusion machinery.  相似文献   
939.
Three chiral calcium antagonist drugs, bepridil and two dihydropyridine derivatives (nicardipine and REC 15/2375), have been successfully separated within short retention times using either the α1-acid glycoprotein chiral stationary phase (Chiral AGP) or the ovomucoid column (Ultron ES-OVM). Aqueous buffer at defined pH is modified by the addition of an organic component (propan-2-ol, acetonitrile, ethanol) in order to modulate the retention properties of each system. The influence of pH and percentage of organic modifier on retention, selectivity, resolution, and column performance are discussed for bepridil analyzed on Chiral AGP and for the two dihydropyridines (nicardipine and REC 15/2375) analyzed on Ultron ES-OVM stationary phases. © 1993 Wiley-Liss, Inc.  相似文献   
940.
McLaren  R. G.  Cameron  K. C.  Fraser  P. M. 《Plant and Soil》1993,155(1):375-378
Synthetic cow urine labelled with 35S and 15N was applied to large, undisturbed, monolith lysimeters sampled from subsoiled and non-subsoiled areas of a grass/clover pasture. For one year following the urine application, the lysimeters were subjected to a combination of natural rainfall, simulated rainfall and simulated flood irrigations. Drainage from the lysimeters was sampled regularly and monthly (approx.) pasture cuts taken. At the end of the year, the lysimeters were destructively sampled in 50 mm depth increments for soil analysis. Leachates, plant samples and soil samples were analysed for 35S and 15N.There were no significant differences in plant uptake of 35S and 15N between the subsoiled and nonsubsoiled lysimeters. Initially grass showed a higher degree of labelling than clover. Total amounts of 35S and 15N leached from the subsoiled lysimeters were approximately twice that leached from the nonsubsoiled ones. Leaching patterns differed substantially between the two nutrients.Total recoveries of 35S (in plants, leachates and soil extracts) accounted for 82% of the applied 35S for the subsoiled lysimeters and 72% for non-subsoiled ones. The unrecovered 35S is considered to have been incorporated into soil organic matter. Total recoveries of 15N (in plants, soil and leachates) were similar to those for 35S, but unrecovered 15N is attributed to loss by denitrification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号