首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1361篇
  免费   186篇
  国内免费   254篇
  2024年   3篇
  2023年   46篇
  2022年   35篇
  2021年   56篇
  2020年   81篇
  2019年   77篇
  2018年   74篇
  2017年   70篇
  2016年   77篇
  2015年   82篇
  2014年   70篇
  2013年   99篇
  2012年   80篇
  2011年   56篇
  2010年   44篇
  2009年   67篇
  2008年   60篇
  2007年   58篇
  2006年   54篇
  2005年   74篇
  2004年   39篇
  2003年   43篇
  2002年   46篇
  2001年   45篇
  2000年   41篇
  1999年   34篇
  1998年   20篇
  1997年   23篇
  1996年   26篇
  1995年   27篇
  1994年   27篇
  1993年   14篇
  1992年   15篇
  1991年   24篇
  1990年   25篇
  1989年   16篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1984年   9篇
  1983年   6篇
  1982年   9篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   1篇
  1974年   2篇
  1969年   1篇
排序方式: 共有1801条查询结果,搜索用时 15 毫秒
51.
Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.  相似文献   
52.
ABSTRACT

This study investigated Hg uptake from soil into garden crops to help assess the significance of human consumption of crops as a potential route of exposure to Hg. Locations for both a floodplain and a control garden were identified within the Augusta Forestry Center near Crimora, VA, USA, which is about 16 river-km downstream from the city of Waynesboro, along the South River. The floodplain garden had measured soil Hg concentrations ranging from 4.2 to 78 mg Hg kg?1 dry weight basis in the surface to 15-cm deep layer. A total of 139 samples from the floodplain garden from 17 different crops were analyzed for Hg. All crop samples (except for nine) had less than 0.1 μg Hg g?1 wet weight basis (ww). Many samples were less than the method detection limit (MDL) of 0.003 μg Hg g?1 ww. Based on the measured Hg concentrations and several conservative assumptions (e.g., Hg assumed present when less than MDL; 100% consumption from the geographical area in which study was conducted; and 100% bioavailable Hg as methyl Hg), consumption of crops with these Hg levels is not expected to be a significant route of Hg exposure.  相似文献   
53.
Crop model‐specific biases are a key uncertainty affecting our understanding of climate change impacts to agriculture. There is increasing research focus on intermodel variation, but comparisons between mechanistic (MMs) and empirical models (EMs) are rare despite both being used widely in this field. We combined MMs and EMs to project future (2055) changes in the potential distribution (suitability) and productivity of maize and spring wheat in South Africa under 18 downscaled climate scenarios (9 models run under 2 emissions scenarios). EMs projected larger yield losses or smaller gains than MMs. The EMs’ median‐projected maize and wheat yield changes were ?3.6% and 6.2%, respectively, compared to 6.5% and 15.2% for the MM. The EM projected a 10% reduction in the potential maize growing area, where the MM projected a 9% gain. Both models showed increases in the potential spring wheat production region (EM = 48%, MM = 20%), but these results were more equivocal because both models (particularly the EM) substantially overestimated the extent of current suitability. The substantial water‐use efficiency gains simulated by the MMs under elevated CO2 accounted for much of the EM?MM difference, but EMs may have more accurately represented crop temperature sensitivities. Our results align with earlier studies showing that EMs may show larger climate change losses than MMs. Crop forecasting efforts should expand to include EM?MM comparisons to provide a fuller picture of crop–climate response uncertainties.  相似文献   
54.
Annual production of crop residues has reached nearly 4 billion metric tons globally. Retention of this large amount of residues on agricultural land can be beneficial to soil C sequestration. Such potential impacts, however, may be offset if residue retention substantially increases soil emissions of N2O, a potent greenhouse gas and ozone depletion substance. Residue effects on soil N2O emissions have gained considerable attention since early 1990s; yet, it is still a great challenge to predict the magnitude and direction of soil N2O emissions following residue amendment. Here, we used a meta‐analysis to assess residue impacts on soil N2O emissions in relation to soil and residue attributes, i.e., soil pH, soil texture, soil water content, residue C and N input, and residue C : N ratio. Residue effects were negatively associated with C : N ratios, but generally residue amendment could not reduce soil N2O emissions, even for C : N ratios well above ca. 30, the threshold for net N immobilization. Residue effects were also comparable to, if not greater than, those of synthetic N fertilizers. In addition, residue effects on soil N2O emissions were positively related to the amounts of residue C input as well as residue effects on soil CO2 respiration. Furthermore, most significant and stimulatory effects occurred at 60–90% soil water‐filled pore space and soil pH 7.1–7.8. Stimulatory effects were also present for all soil textures except sand or clay content ≤10%. However, inhibitory effects were found for soils with >90% water‐filled pore space. Altogether, our meta‐analysis suggests that crop residues played roles beyond N supply for N2O production. Perhaps, by stimulating microbial respiration, crop residues enhanced oxygen depletion and therefore promoted anaerobic conditions for denitrification and N2O production. Our meta‐analysis highlights the necessity to connect the quantity and quality of crop residues with soil properties for predicting soil N2O emissions.  相似文献   
55.
Elevated atmospheric CO2 concentrations ([CO2]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2] may be particularly large in deserts, but information on their long‐term response is unknown. We evaluated the cumulative effects of elevated [CO2] on primary production at the Nevada Desert FACE (free‐air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10‐year elevated [CO2] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long‐term results of elevated [CO2] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground components. However, elevated [CO2] increased short‐term responses, including leaf water‐use efficiency (WUE) as measured by carbon isotope discrimination and increased plot‐level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground pools significantly differed among dominant species, but responses to elevated [CO2] did not vary among species, photosynthetic pathway (C3 vs. C4), or growth form (drought‐deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf‐level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2] during the 10‐year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2] is explained by inter‐annual differences in water availability. Therefore, the high frequency of low precipitation years may constrain cumulative biomass responses to elevated [CO2] in desert environments.  相似文献   
56.
The sequencing of large and complex genomes of crop species, facilitated by new sequencing technologies and bioinformatic approaches, has provided new opportunities for crop improvement. Current challenges include understanding how genetic variation translates into phenotypic performance in the field.  相似文献   
57.
云南及周边地区农作物野生近缘植物   总被引:1,自引:0,他引:1  
"云南及周边地区生物资源调查"项目是国家科技部基础性工作专项,现已通过国家验收。云南及周边地区是低纬度高海拔地区,也是我国少数民族聚居区,农作物的种类和物种多样性及遗传多样性都十分丰富,并且孕育了丰富的农作物野生近缘植物。本文仅介绍云南及周边地区粮食作物、经济作物、蔬菜作物、果树作物的野生近缘植物,旨在为这些野生近缘植物的研究和开发,制定国家野生植物多样性保护政策提供基础数据和相关信息。  相似文献   
58.
Primates inhabiting human-modified landscapes often exploit matrix habitat to supplement their diet with cultivated foods, at times resulting in economic losses and conflict with local people. Understanding human-nonhuman primate interactions and the attitudes and perceptions of local people towards crop feeding species are crucial to designing effective species-based management plans. Over a 12-month period, we used scan sampling to study the consumption of cultivated foods and matrix use patterns by two habituated groups of Bale monkeys (Chlorocebus djamdjamensis), Ethiopian-endemic bamboo specialists, in two forest fragments (Kokosa and Afursa) set amidst human settlements and farmland in the southern Ethiopian Highlands. Further, we conducted interviews with local people to document their attitudes and perceptions towards Bale monkeys at the two sites. We found that Bale monkeys at Kokosa, a more degraded habitat by most measures, consumed significantly more cultivated foods than their counterparts at Afursa. Moreover, Bale monkeys at Kokosa spent significantly more time in the matrix than in the forest habitat, while monkeys at Afursa spent significantly less time in the matrix than in the forest habitat. Not surprisingly, local people displayed a more negative attitude towards monkeys inhabiting Kokosa than those inhabiting Afursa. The differences in Bale monkey cultivated food consumption and matrix use patterns—as well as in local people's attitudes and perceptions towards Bale monkeys—between Kokosa and Afursa are probably associated with differences in habitat structure, degree of habitat alteration, and land-use practices between the sites. We conclude that to ensure long-term coexistence between Bale monkeys and local people in human-modified landscapes, it is vital to incorporate nearby matrix habitats into management plans and to work closely with local communities to develop effective nonlethal crop protection strategies, thereby reducing the likelihood of negative interactions between Bale monkeys and humans.  相似文献   
59.
Salt stress is one of the major abiotic stress in plants. However, traditional approaches are not always efficient in conferring salt tolerance. Experiments were conducted to understand the role of Trichoderma spp. (T. harzianum and T. viride) in growth, chlorophyll (Chl) synthesis, and proline accumulation of C. pepo exposed to salinity stress. There were three salt stress (50, 100, and 150 mM NaCl) lavels and three different Trichoderma inoculation viz. T. harzianum, T. viride, and T. harzianum + T. viride. Salt stress significantly declined the growth in terms of the shoot and root lengths; however, it was improved by the inoculation of Trichoderma spp. C. pepo inoculated with Trichoderma exhibited increased synthesis of pigments like chl a, chl b, carotenoids, and anthocyanins under normal conditions. It was interesting to observe that such positive effects were maintained under salt-stressed conditions, as reflected by the amelioration of the salinity-mediated decline in growth, physiology and antioxidant defense. The inoculation of Trichoderma spp. enhanced the synthesis of proline, glutathione, proteins and increased the relative water content. In addition, Trichoderma inoculation increased membrane stability and reduced the generation of hydrogen peroxide. Therefore, Trichoderma spp. can be exploited either individually or in combination to enhance the growth and physiology of C. pepo under saline conditions.  相似文献   
60.
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing, derived from prokaryotic immunity system, is rapidly emerging as an alternative platform for introducing targeted alterations in genomes. The CRISPR-based tools have been deployed for several other applications including gene expression studies, detection of mutation patterns in genomes, epigenetic regulation, chromatin imaging, etc. Unlike the traditional genetic engineering approaches, it is simple, cost-effective, and highly specific in inducing genetic variations. Despite its popularity, the technology has limitations such as off-targets, low mutagenesis efficiency, and its dependency on in-vitro regeneration protocols for the recovery of stable plant lines. Several other issues such as persisted CRISPR activity in subsequent generations, the potential for transferring to its wild type population, the risk of reversion of edited version to its original phenotype particularly in cross-pollinated plant species when released into the environment and the scarcity of validated targets have been overlooked. This article briefly highlights these undermined aspects, which may challenge the wider applications of this platform for improving crop genetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号