首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   12篇
  国内免费   27篇
  2023年   2篇
  2021年   4篇
  2020年   8篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   16篇
  2012年   14篇
  2011年   20篇
  2010年   6篇
  2009年   15篇
  2008年   19篇
  2007年   16篇
  2006年   17篇
  2005年   9篇
  2004年   7篇
  2003年   11篇
  2002年   6篇
  2001年   6篇
  2000年   9篇
  1999年   7篇
  1998年   8篇
  1997年   6篇
  1996年   7篇
  1995年   12篇
  1994年   6篇
  1993年   8篇
  1992年   9篇
  1991年   5篇
  1990年   7篇
  1989年   8篇
  1988年   3篇
  1987年   7篇
  1986年   6篇
  1985年   9篇
  1984年   7篇
  1983年   2篇
  1982年   5篇
  1981年   7篇
  1980年   6篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
81.
Pupal diapause in Heliothis zea is regulated by a temperature-sensitive mechanism which prevents ecdysone production despite the release of prothoracicotropic hormone. To determine how this mechanism functioned, donor prothoracic glands were implanted into prothoracic gland-ablated hosts to test their ability to produce ecdysone in a diapause-sustaining temperature of 19°C. Results of these experiments ruled out the possibility that ecdysis production was regulated by the nervous system or by a mechanism intrinsic to the prothoracic glands, and suggested that a humoral factor was required for diapause termination.Haemolymph injection experiments supported this humoral factor hypothesis, i.e. haemolymph from non-diapausing donor pupae terminated diapause in hosts maintained at 19°C, whereas haemolymph from diapausing donor pupae had no such effect. These findings indicate that the temperature-sensitive mechanism regulating H. zea diapause functions by controlling the availability of a humoral factor necessary for ecdysone production by the prothoracic glands.  相似文献   
82.
玉米原生质体的植株再生   总被引:6,自引:1,他引:5  
以玉米花粉诱导产生的胚性愈伤组织,在 N6基本培养基附加激动素2 mg/l,6-苄基氨基嘌呤1mg/l,2,4-D 0.3 mg/l,水解酪蛋白500 mg*l 及谷酰胺250 mg/l 的培养基上进行转代培养。用转代培养一年半后的胚性愈伤组织分离原生质体,原生质体培养在附加激动素0.2 mg/l,6-苄基氨基嘌呤0.1 mg/l,2,4-D 0.5 mg/1,水解酪蛋白200 mg/l,谷酰胺100 mg/l及椰乳296的原生质体培养基 Z_2中。培养4—6天后,原生质体的再生细胞进行第一次分裂;培养3星期后发育成肉眼可见的小愈伤组织。此后,需添加降低糖浓度的同样原生质体培养基 Z_2共两次。待再生愈伤组织长到直径2—4 mm 大小时,把它们先后转经第一及第二(即Z_3及 Z_4)分化培养基上诱导器官分化。最后在 Z_4分化培养基上同时有胚状体的发生及植株的分化。  相似文献   
83.
The fast fluorescence decay kinetics of two photosynthetic mutants of corn (Zea mays) have been compared with those of normal corn. The fluorescence of normal corn can be resolved into three exponential decay components of lifetime 900–1500 ps (slow), 300–500 ps (middle) and 50–120 ps (fast), the yields of which are affected by light intensity and Mg2+ levels. The Photosystem II-(PS II)-defective mutant hcf-3 has similar decay lifetimes (approx. 1200, 450 and 100 ps) but is not affected by light intensity, reflecting the absence of PS II charge recombination. However, yields do respond to Mg2+ in a fashion typical of normal corn, which may be correlated with the presence of normal levels of light-harvesting chlorophyll a + b complex (LHCP). The PS I mutant hcf-50 also shows three-component decay kinetics. In conjunction with the results on the LHCP-deficient mutant of barley presented in a recent paper (Karukstis, K.K. and Sauer, K. (1984) Biochim. Biophys. Acta 766, 148–155), these data suggest that the slow component of normal chloroplasts is kinetically controlled by the decay processes of the LHCP and that the energy comes from one of two sources: (a) charge recombination in the reaction centre or (b) energy transferred within or between LHCP units only. The fast component appears to originate from both PS I and PS II. The complex response of the middle component to cations and light intensity, and its presence in all of the mutants, suggests that it also may have multiple origins.  相似文献   
84.
The effects on dietary self-selection of phagostimulation and metabolic feedback from nutrients were seperated by using two unusual carbohydrates alone or in combination: mannitol, which is nutritive but not phagostimulatory for H. zea larvae; and sorbose, which is weakly phagostimulatory but not nutritive. Last instar H. zea larvae recognized and responded positively to mannitol by metabolic feedback when it was included in a diet with casein. When offered a choice of two diets, one containing casein but lacking a utilizable carbohydrate and another lacking casein but including either mannitol or sorbose, they did not self-select for either mannitol or sorbose. However, in a similar experiment, in which the carbohydrate diet contained a mixture of mannitol and sorbose, there was a positive response, demonstrating that both metabolic feedback and phagostimulation are required to elicit self-selection.
Résumé Les chenilles d'H. zea peuvent choisir un mélange nutritif optimal parmi deux régimes séparés, répondant à des besoins alimentaires différents. Cette aptitude à l'autosélection pose la question des voies de sélection d'un régime optimal par l'insecte. L'autosélection est probablement réalisée par un feedback métabolique des aliments; la stimulation sensorielle par les aliments pourrait jouer elle aussi un rôle. Notre objectif est de séparer ces deux facteurs et d'en déterminer l'importance relative.Des L 5 venant de muer ont pu s'alimenter sur 2 régimes nutritionnellement complets, mais dont l'un contenait des carbohydrates (sucrose) mais non des protéines, tandis que l'autre contenait des protéines (caséine) mais non des carbohydrates. L'auto-sélection caséine/sucrose a été 81/19; elle correspond à la portion idéale pour le dernier stade des chenilles H. zea établie lors d'expériences antérieures (Waldbauer et al., 1984a). Pour comparer l'importance relative du feedback métabolique et de la stimulation sensorielle, 2 carbohydrates ont été substitués au sucrose, qui est à la fois nutritif et phagostimulant: le mannitol, nutritif mais ne stimulant pas de prise de nourriture, et le sorbose, faiblement stimulant mais non nutritif. Quand elles ont le choix, les chenilles ne sélectionnent ni mannitol, ni sorbose, mais consomment presque exclusivement le régime alternatif à la caséine. Quand sorbose et mannitol sont mélangés et proposés ensemble, la réponse est positive, montrant que le feedback métabolique et la stimulation sensorielle sont impliqués tous deux dans l'autosélection alimentaire.Des expériences en deux étapes d'autosélection ont montré que le feedback métabolique est de première importance. Dans la première, les chenilles avaient le choix entre caséine seule et caséine et mannitol. Les chenilles ont consommé significativement plus d'aliment avec mannitol que sans carbohydrate, bien que les goûts des deux régimes aient du être identiques, puisque le mannitol n'a pas de goût pour H. zea. La caséine a été vraisemblablement assez phagostimulante pour maintenir suffisamment les chenilles sur l'aliment avec mannitol et ainsi permettre au feedback métabolique du mannitol d'influer sur leur maintien sur cet aliment sans en rechercher un autre.Dans d'autres expériences, les chenilles ont eu le choix entre un régime alimentaire classique avec de la caséinne et d'autres n'ayant plus leur caséine mais avec des quantités décroissantes de sucrose. Elles n'ont pas réagi en consommant plus d'aliments avec du sucrose dilué, mais en consommant plus de caséine. Cependant, si du mannitol, pourtant non phagostimulant, est ajouté à des aliments avec du sucrose dilué pour remplacer le sucrose manquant, les chenilles ne compensent plus en consommant plus d'aliments avec de la caséine, mais de la même façon qu'elles le feraient avec un aliment contenant la concentration adéquate de sucrose, montrant qu'elles perçoivent ainsi le feedback métabolique du mannitol, qui est pourtant sans goût.
  相似文献   
85.
A new C-glycosylflavone isolated from corn silk inhibits the growth and development of the corn earworm, Heliothis zea. This new compound was shown to be a 2″-O-α-l-rhamnosyl-6-C-(6-deoxy-xylo-hexos-4-ulosyl)luteolin. Also found co-occurring in corn silk were minor amounts of the corresponding 6-C-glycosylated analogs of chrysoeriol and apigenin.  相似文献   
86.
87.
Negative correlations between corn vitreousness and ruminal dry matter and starch degradabilities have been widely reported. To measure corn vitreousness and density more rapidly, Correa et al. [Correa, C.E.S., Shaver, R.D., Pereira, M.N., Lauer, J.G., Kohn, K., 2002. Relationship between corn vitreousness and ruminal in-situ starch degradability. J. Dairy Sci. 85, 3008–3012] initiated the development of near-infrared reflectance spectroscopy (NIRS) calibrations from 47 samples derived from 14 US and five Brazilian commercial hybrids. In this study, we generated more data to add to these NIRS calibrations with the objective of making them more robust. We also evaluated the potential of using Stenvert hardness measurements for NIR calibrations. Thirty-three diverse corn germplasm sources were grown at University of Wisconsin West Madison Research Station. These included a wide range of endosperm characteristics from opaque 2 (o2) types to densely packed flint types, and a number of intermediates. Harvest was at 1/2 milkline and black-layer maturity stages. Dried kernels from middle portions of ears from 12 selected inbreds, four each from low (0–30%), medium (30–70%), and high (70–100%) vitreousness classifications were used to determine vitreousness by manual dissection and density by water displacement using a pycnometer. Hardness was determined on all 33 inbreds on a 20 g sample using a Stenvert micro hammer-cutter mill with 2 mm screen size and 3600 rpm to measure time to collect ground sample to a set receptacle height (T); total column height (CH); and height ratio of coarse to fine (C/F) particles. The NIRS equations were selected on the basis of high R2-values (0.90, 0.92, 0.85, and 0.85) and low SEC (4.85, 0.01, 1.39, and 0.19) and SECV (6.04, 0.02, 1.79, and 0.25), for vitroueness, density, T and CH factors, respectively. Calibrations for vitreousness and density were regarded as the best prediction models compared to stenvert hardness measurements as determined by their RPD values (3.73 and 2.50, respectively). These results show that NIRS can be used as a screening tool in large-scale breeding trials to develop corn hybrids of desired endosperm properties for improved ruminal degradabilities.  相似文献   
88.
The corn cyst nematode Heterodera zeae was detected in soil from an organic maize field in northern Greece. In greenhouse studies, reproduction of H. zeae was detected on maize plants (Zeae mays) using soil high in organic matter; the field was under winter fallow at the time of sampling. Maize plants were grown in a greenhouse with soil from the affected field used as inoculum. Females appeared after six weeks incubation, and abundant cysts were present after 12 weeks. Morphological and molecular diagnosis confirmed the presence of H. zeae in the field. Cysts were identified on the basis of cyst shape and characteristics of the cyst terminal cone, including nature of fenestration, presence of bullae, cyst wall pattern, and fenestral diameter. Second-stage juveniles were identified by body and stylet length, the shape of stylet knobs, shape and length of the tail and hyaline tail terminus, and by the number of lateral lines. Molecular analysis included amplification of the ribosomal internal transcribed spacer regions (ITS 1&2 rDNA) 28S large ribosomal subunit (LSU) D2-D3 expansion segment, and partial 18S small ribosomal subunit (SSU). Restriction fragment length polymorphism (RFLP) of ITS rDNA exhibited several unique enzyme patterns that may be diagnostically useful for H. zeae. These findings are in agreement with prior analysis of H. zeae populations from the U.S. and India. Phylogenetic relationships inferred from ITS rDNA are congruent with previous analyses that placed H. zeae in a clade with H. turcomanica, H. salixophila and species of the Humuli group. Phylogenetic trees based upon heat shock protein (Hsp90) coding sequence were in general agreement with a prior study using the same marker. This study represents the first record of H. zeae in Greece and the second report of this nematode in Europe.  相似文献   
89.
The mechanisms by which many plant growth promoting rhizobacteria (PGPR) affect plants are unknown. We recently isolated a rhizosphere bacterium (Bacillus thuringiensis NEB17), that promotes soybean growth and screened the liquid growth medium in which it grew for plant growth stimulating materials. We have also shown that it produces a bacteriocin (named by us as thuricin-17 and a member of the recently described class IId bacteriocins). Here we show that application of this bacteriocin to leaves (spray) or roots (drench) directly stimulates the growth of both a C3 dicot (soybean) and a C4 monocot (corn). This growth stimulation is similar in nature to that previously seen when plants are treated with Nod factors. Strain NEB17 contains three copies of the gene for thuricin 17 that code for identical amino acid sequences. These two lines of evidence suggest that the dual functions of these proteins may have constrained their evolution. This is the first report of direct plant growth enhancement by a bacteriocin.  相似文献   
90.
Gong HZ  Ji R  Li YX  Zhang HY  Li B  Zhao Y  Sun L  Yu F  Yang J 《Mycopathologia》2009,167(1):31-36
Fumonisin B1 (FB1) is the most abundant of the fumonisin mycotoxins, mainly produced in maize by F. verticillioides and F. proliferatum. A total of 282 corn samples harvested in 2005 from six provinces, the main corn-producing areas of China, were analyzed for FB1 using high-performance liquid chromatography. All samples except one were (99.6%) positive for FB1 at levels varying from 3 to 71,121 ng/g with mean and median levels for all samples of 6,662 and 1,569 ng/g, respectively. During an analysis of the distribution pattern for FB1, it became apparent that 43.6% of tested samples had FB1 concentrations below 1,000 ng/g, while 25.2% contained in excess of 5,000 ng/g. The average exposure to FB1 (1.1 μg/kg body weight/day) is within the provisional maximum tolerable daily intake of 2 μg/kg body weight/day set by the Joint FAO/WHO Expert Committee on Food Additives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号