首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2275篇
  免费   174篇
  国内免费   69篇
  2518篇
  2024年   16篇
  2023年   35篇
  2022年   13篇
  2021年   60篇
  2020年   69篇
  2019年   81篇
  2018年   63篇
  2017年   67篇
  2016年   66篇
  2015年   75篇
  2014年   87篇
  2013年   85篇
  2012年   55篇
  2011年   98篇
  2010年   54篇
  2009年   143篇
  2008年   167篇
  2007年   153篇
  2006年   147篇
  2005年   120篇
  2004年   106篇
  2003年   86篇
  2002年   65篇
  2001年   65篇
  2000年   58篇
  1999年   65篇
  1998年   73篇
  1997年   30篇
  1996年   34篇
  1995年   34篇
  1994年   30篇
  1993年   15篇
  1992年   26篇
  1991年   19篇
  1990年   29篇
  1989年   17篇
  1988年   14篇
  1987年   14篇
  1986年   17篇
  1985年   18篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   10篇
  1980年   3篇
  1979年   2篇
  1978年   9篇
  1977年   8篇
  1974年   2篇
  1972年   1篇
排序方式: 共有2518条查询结果,搜索用时 15 毫秒
11.
The parental environment can alter offspring phenotypes via the transfer of non‐genetic information. Parental effects may be viewed as an extension of (within‐generation) phenotypic plasticity. Smaller size, poorer physical condition, and skewed sex ratios are common responses of organisms to global warming, yet whether parental effects alleviate, exacerbate, or have no impact on these responses has not been widely tested. Further, the relative non‐genetic influence of mothers and fathers and ontogenetic timing of parental exposure to warming on offspring phenotypes is poorly understood. Here, we tested how maternal, paternal, and biparental exposure of a coral reef fish (Acanthochromis polyacanthus) to elevated temperature (+1.5°C) at different ontogenetic stages (development vs reproduction) influences offspring length, weight, condition, and sex. Fish were reared across two generations in present‐day and projected ocean warming in a full factorial design. As expected, offspring of parents exposed to present‐day control temperature that were reared in warmer water were shorter than their siblings reared in control temperature; however, within‐generation plasticity allowed maintenance of weight, resulting in a higher body condition. Parental exposure to warming, irrespective of ontogenetic timing and sex, resulted in decreased weight and condition in all offspring rearing temperatures. By contrast, offspring sex ratios were not strongly influenced by their rearing temperature or that of their parents. Together, our results reveal that phenotypic plasticity may help coral reef fishes maintain performance in a warm ocean within a generation, but could exacerbate the negative effects of warming between generations, regardless of when mothers and fathers are exposed to warming. Alternatively, the multigenerational impact on offspring weight and condition may be a necessary cost to adapt metabolism to increasing temperatures. This research highlights the importance of examining phenotypic plasticity within and between generations across a range of traits to accurately predict how organisms will respond to climate change.  相似文献   
12.
Ecological niche theory predicts that coexistence is facilitated by resource partitioning mechanisms that are influenced by abiotic and biotic interactions. Alternative hypotheses suggest that under certain conditions, species may become phenotypically similar and functionally equivalent, which invokes the possibility of other mechanisms, such as habitat filtering processes. To test these hypotheses, we examined the coexistence of the giant redfin Pseudobarbus skeltoni, a newly described freshwater fish, together with its congener Pseudobabus burchelli and an anabantid Sandelia capensis by assessing their scenopoetic and bionomic patterns. We found high habitat and isotope niche overlaps between the two redfins, rendering niche partitioning a less plausible sole mechanism that drives their coexistence. By comparison, environment–trait relationships revealed differences in species–environment relationships, making habitat filtering and functional equivalence less likely alternatives. Based on P. skeltoni's high habitat niche overlap with other species, and its large isotope niche width, we inferred the likelihood of differential resource utilization at trophic level as an alternative mechanism that distinguished it from its congener. In comparison, its congener P. burchelli appeared to have a relatively small trophic niche, suggesting that its trophic niche was more conserved despite being the most abundant species. By contrast, S. capensis was distinguished by occupying a higher trophic position and by having a trophic niche that had a low probability of overlapping onto those of redfins. Therefore, trophic niche partitioning appeared to influence the coexistence between S. capensis and redfins. This study suggests that coexistence of these fishes appears to be promoted by their differences in niche adaptation mechanisms that are probably shaped by historic evolutionary and ecological processes.  相似文献   
13.
14.
In floodplain ponds with low piscivore abundance, both endemic Midgley's gudgeons, Hypseleotris sp. 5, and exotic mosquitofish, Gambusia holbrooki, showed significant ontogenetic variation in the use of food and space. Small gudgeons were generally associated with surface and benthic habitats, then restricted their distribution to benthic habitats at a size of approximately 24mm (standard length). The ontogenetic variation in mosquitofish habitat use was less discrete, and could be described as a tendency for larger individuals to be associated with the bottom of the littoral macrophyte beds than with the surface of the macrophyte beds or surface of the limnetic zone. Small gudgeons exhibited high spatial overlap with mosquitofish within the surface habitats of the ponds. All size-class/species comparisons showed significant partitioning of food resources, however, the diets of small gudgeons and mosquitofish were very similar. Therefore, juvenile gudgeons may have to pass through a similar spatial and trophic niche to introduced mosquitofish before recruiting to the adult stage. Possible mechanisms driving the ontogenetic variation in gudgeon and mosquitofish habitat use are discussed. This paper demonstrates that ontogenetic niche shifts at fine spatial scales can affect our interpretation of interactions between native and introduced fishes.  相似文献   
15.
To test ecological niche theory, this study investigated the spatial patterns and the environmental niches of native and non-native fishes within the invaded Great Fish River system, South Africa. For the native fishes, there were contrasting environmental niche breadths that varied from being small to being large and overlapped for most species, except minnows that were restricted to headwater tributaries. In addition, there was high niche overlap in habitat association among fishes with similar distribution. It was therefore inferred that habitat filtering-driven spatial organisation was important in explaining native species distribution patterns. In comparison, most non-native fishes were found to have broad environmental niches and these fishes showed high tolerance to environmental conditions, which generally supported the niche opportunity hypothesis. The proliferation of multiple non-native fishes in the mainstem section suggest that they form a functional assemblage that is probably facilitated by the anthropogenic modification of flow regimes through inter-basin water transfer. Based on the distribution patterns observed in the study, it was inferred that there was a likelihood of negative interactions between native and non-native fishes. Such effects are likely to be exacerbated by altered flow regime that was likely to have negative implications for native ichthyofauna.  相似文献   
16.
The influence of a substratum-disturbing forager, the spotted goatfish Pseudupeneus maculatus on the assemblage of its escorting, opportunistic-feeding fishes was examined at Fernando de Noronha Archipelago (tropical west Atlantic). Followers attracted to spotted goatfish foraging singly differed from followers of spotted goatfish foraging in groups in several characteristics. The larger the nuclear fish group, the greater the species richness and number of individuals of followers. Moreover, groups of foraging spotted goatfish attracted herbivores, not recorded for spotted goatfish foraging singly. The size of follower individuals increased with the size and the number of foraging spotted goatfish. The zoobenthivorous habits of the spotted goatfish and its ability to disturb a variety of soft substrata render it an important nuclear fish for several follower species of the reef fish assemblage at Fernando de Noronha.  相似文献   
17.
18.
19.
Aim The highly endemic fishes of the arid Southwest USA have been heavily impacted by human activities resulting in one of the most threatened fish faunas in the world. The aim of this study was to examine the patterns and drivers of taxonomic and functional beta diversity of freshwater fish in the Lower Colorado River Basin across the 20th century. Location Lower Colorado River Basin (LCRB). Methods The taxonomic and functional similarities of watersheds were quantified to identify patterns of biotic homogenization or differentiation over the period 1900–1999. Path analysis was used to identify the relative influence of dam density, urban land use, precipitation regimes and non‐native species richness on observed changes in fish faunal composition. Results The fish fauna of the LCRB has become increasingly homogenized, both taxonomically (1.1% based on βsim index) and functionally (6.2% based on Bray–Curtis index), over the 20th century. The rate of homogenization varied substantially; range declines of native species initially caused taxonomic differentiation (?7.9% in the 1960s), followed by marginal homogenization (observed in the 1990s) in response to an influx of non‐native species introductions. By contrast, functional homogenization of the basin was evident considerably earlier (in the 1950s) because of the widespread introduction of non‐native species sharing similar suites of biological traits. Path analysis revealed that both taxonomic and functional homogenization were positively related to the direct and indirect (facilitation by dams and urbanization) effects of non‐native species richness. Main conclusions Our study simultaneously examines rates of change in multiple dimensions of the homogenization process. For the endemic fish fauna of the LCRB, we found that the processes of taxonomic and functional homogenization are highly dynamic over time, varying both in terms of the magnitude and rate of change over the 20th century.  相似文献   
20.
Pile-driving and other impulsive sound sources have the potential to injure or kill fishes. One mechanism that produces injuries is the rapid motion of the walls of the swim bladder as it repeatedly contacts nearby tissues. To further understand the involvement of the swim bladder in tissue damage, a specially designed wave tube was used to expose three species to pile-driving sounds. Species included lake sturgeon (Acipenser fulvescens)—with an open (physostomous) swim bladder, Nile tilapia (Oreochromis niloticus)—with a closed (physoclistous) swim bladder and the hogchoker (Trinectes maculatus)—a flatfish without a swim bladder. There were no visible injuries in any of the exposed hogchokers, whereas a variety of injuries were observed in the lake sturgeon and Nile tilapia. At the loudest cumulative and single-strike sound exposure levels (SELcum and SELss respectively), the Nile tilapia had the highest total injuries and the most severe injuries per fish. As exposure levels decreased, the number and severity of injuries were more similar between the two species. These results suggest that the presence and type of swim bladder correlated with injury at higher sound levels, while the extent of injury at lower sound levels was similar for both kinds of swim bladders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号