全文获取类型
收费全文 | 2135篇 |
免费 | 33篇 |
国内免费 | 44篇 |
专业分类
2212篇 |
出版年
2023年 | 18篇 |
2022年 | 16篇 |
2021年 | 28篇 |
2020年 | 32篇 |
2019年 | 31篇 |
2018年 | 25篇 |
2017年 | 14篇 |
2016年 | 25篇 |
2015年 | 46篇 |
2014年 | 64篇 |
2013年 | 94篇 |
2012年 | 48篇 |
2011年 | 186篇 |
2010年 | 112篇 |
2009年 | 207篇 |
2008年 | 160篇 |
2007年 | 175篇 |
2006年 | 114篇 |
2005年 | 134篇 |
2004年 | 122篇 |
2003年 | 79篇 |
2002年 | 65篇 |
2001年 | 30篇 |
2000年 | 25篇 |
1999年 | 34篇 |
1998年 | 31篇 |
1997年 | 32篇 |
1996年 | 24篇 |
1995年 | 25篇 |
1994年 | 11篇 |
1993年 | 25篇 |
1992年 | 13篇 |
1991年 | 16篇 |
1990年 | 22篇 |
1989年 | 15篇 |
1988年 | 10篇 |
1987年 | 10篇 |
1986年 | 11篇 |
1985年 | 12篇 |
1984年 | 11篇 |
1983年 | 13篇 |
1982年 | 15篇 |
1981年 | 13篇 |
1980年 | 11篇 |
1979年 | 7篇 |
1978年 | 1篇 |
排序方式: 共有2212条查询结果,搜索用时 46 毫秒
41.
Nobuo Hoshino Takahide Kimura Akira Yamaji Takashi Ando 《Free radical biology & medicine》1999,27(11-12)
In the presence of a nonlethal concentration of Cu(II), washed Escherichia coli ATCC11775 cells were killed by (-)-epigallocatechin (EGC) and (-)-epicatechin (EC). Cell killing was accompanied by a depletion in both the ATP and potassium pools of the cells, but the DNA double strand was not broken, indicating that the bactericidal activity of catechins in the presence of Cu(II) results from damage to the cytoplasmic membrane. Induction of endogenous catalase in E. coli cells increased their resistance to being killed by the combination of catechins and Cu(II). In all cases studied, EGC and EC with Cu(II) were found to generate hydrogen peroxide, but its concentration was too low to account for the bactericidal activity. The bactericidal activity of EGC in the presence of Cu(II) was completely suppressed by ethylenediaminetetraacetate, bathocuproine, catalase, superoxide disumutase (SOD), heated catalase, and heated SOD, but not by dimethyl sulfoxide. When catalase, either heated or unheated, was added to the cells incubated with EGC in the presence of Cu(II), it completely inhibited further killing of the cells. These findings suggest that recycling redox reactions between Cu(II) and Cu(I), involving catechins and hydrogen peroxide on the cell surface, must be important in the mechanism of the killing. 相似文献
42.
常规灌注固定法多用于兔和大鼠等较大动物,并存在一些不足。改进了灌注固定法流程、灌注溶液的配方、流速、用量以及灌注装置,将其用于在显微操作下制备的缺血再灌注C57BL/6N小鼠模型,并对其海马进行H.E染色和免疫组织化学SOD1基因表达。结果显示,改进的灌注固定法使组织切片结构更加清晰,海马免疫阳性神经元定位于胞浆。缺血再灌注组(24hI/R)海马神经元SOD1表达比假手术对照组(sham-o)减少,而高压氧治疗组(24hHBO)SOD1表达有所恢复。表明改进的灌注固定法用于缺血再灌注C57BL/6N小鼠海马SOD1基因表达效果良好,结果可靠。实验结果提示,高压氧的治疗机制之一可能是通过增加SOD1基因表达而实现的。 相似文献
43.
Marion R Zaarour M Qachachi NA Saleh NM Justaud F Floner D Lavastre O Geneste F 《Journal of inorganic biochemistry》2011,105(11):1391-1397
A family of tripodal pyrazole-based ligands has been synthesized by a condensation reaction between 1-hydroxypyrazoles and aminoalcohols. The diversity was introduced both on the substituents of the pyrazole ring and on the side chain. The corresponding copper(II) complexes have been prepared by reaction with CuCl2 in tetrahydrofuran. They have been characterized by EPR, UV spectroscopy and cyclic voltammetry. The absence of the half-field splitting signals in EPR suggests that the complex exists in solution as mononuclear species. The influence of substituents and side chain of the tripodal ligand on the catecholase activity of the complexes was studied. The reaction rate depends on two factors. First, the presence of an oxygen atom in the third position of the side chain should be avoided to keep the effectiveness of the reaction. Second, the electronic and steric effects of substituents on the pyrazole ring strongly affect the catalytic activity of the complex. Thus, best results were obtained with complexes containing unsubstituted pyrazole based-ligands. Kinetic investigations with the best catalyst based on the Michaelis–Menten model show that the catalytic activity of the mononuclear complex is close to that of some dicopper complexes described in literature. 相似文献
44.
A two-dimensional copper(II) polymer with formula of [Cu4(H2O)4(dmapox)2(btc)]n · 10nH2O, where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide and btc is the tetra-anion of 1,2,4,5-benzenetetracarboxylic acid, was synthesized and characterized by elemental analysis, conductivity measurement, IR and electronic spectral studies. The crystal structure of the complex has been determined by X-ray single-crystal diffraction. The structure consists of crystallized water molecules and neutral two-dimensional copper(II) coordination polymeric networks constructed both by the bis-tridentate μ-trans-dmapox and tetra-monodentate μ4-btc bridging ligands. Each btc ligand links four trans-dmapox-bridged binuclear copper(II) building blocks [Cu2(H2O)2(trans-dmapox)]2+ and each binuclear copper(II) building block attaches to two btc ligands forming an infinite 2D layer which consists of 4+4 grids with dimensions of 13.563(5) × 15.616(5) Å. The environment around the copper(II) atom can be described as a distorted square-pyramid and the Cu?Cu separations through μ-trans-dmapox and μ4-btc bridging ligands are 5.225 Å (Cu1-Cu1i), 5.270 Å (Cu2-Cu2ii), 6.115 Å (Cu1-Cu2), 9.047 Å (Cu1-Cu2iii) and 10.968 Å (Cu1-Cu1iii), respectively. Abundant hydrogen bonds among the crystallized, the coordinated water molecules, and the uncoordinated carboxyl oxygen atoms cross-link the two-dimensional layers into an overall three-dimensional channel-like framework. The interaction of the copper(II) polymer with calf thymus DNA (CT-DNA) has been investigated by using absorption, emission spectral and electrochemical techniques. The results indicate that the copper(II) polymer interacts with DNA strongly (Kb = 4.8 × 105 M−1 and Ksv = 1.1 × 104) and the interaction mode between the copper(II) polymer and DNA may be the groove binding. To the best of our knowledge, this is the first report about the crystal structure and DNA-binding studies of a two-dimensional copper(II) polymer bridged both by the trans-oxamidate and btc ligands. 相似文献
45.
da Silveira VC Benezra H Luz JS Georg RC Oliveira CC Ferreira AM 《Journal of inorganic biochemistry》2011,105(12):1692-1703
Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential antitumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria. Herein, we better characterize the interactions between some of these copper(II) complexes and DNA. Investigations on its binding ability to DNA were carried out by fluorescence measurements in competitive experiments with ethidium bromide, using plasmidial or calf-thymus DNA. These results indicated an efficient binding process similar to that observed with copper(II)-phenanthroline species, [Cu(o-phen)2]2+, with binding constants in the range 3 to 9 × 102 M− 1. DNA cleavage experiments in the presence and absence of distamycin, a recognized binder of DNA, indicated that this binding probably occurs at major or minor groove, leading to double-strand DNA cleavage, and being modulated by the imine ligand. Corroborating these data, discrete changes in EPR spectra of the studied complexes were observed in the presence of DNA, while more remarkable changes were observed in the presence of nucleotides (AMP, GMP, CMP or UMP). Additional evidence for preferential coordination of the copper centers to the bases guanine or cytosine was obtained from titrations of these complexes with each nucleotide, monitored by absorption spectral changes. Therefore, the obtained data point out to their action as groove binders to DNA bases, rather than as intercalators or covalent cross-linkers. Further investigations by SDS PAGE using 32P-ATP or 32P-oligonucleotides attested that no hydrolysis of phosphate linkage in DNA or RNA occurs, in the presence of such complexes, confirming their main oxidative mechanism of action. 相似文献
46.
Copper is an essential element necessary for normal function of numerous enzymes in all living organisms. Uptake of copper into the cell is thought to occur through the membrane protein, SLC31A1 (CTR1), which has been described in a variety of species including yeast, human and mouse. In this study, we present cloning, gene structure, chromosomal localization and expression pattern of the Sus scrofa SLC31A1 gene, which encodes a 189 amino acid protein. The (SSC) SLC31A1 gene is organized in four exons and spans an approximately 2.3 kb genomic region. We have localized the gene to chromosome 1q28-q2.13 using a somatic cell hybrid panel. This region shows conservation of synteny with human chromosome 9, where the human SLC31A1 (CTR1) gene has been localized. Expression studies suggest that SLC31A1 mRNA is transcribed in all tissues examined. 相似文献
47.
Huang CY Buchanan DL Gordon RL Sherman MJ Razzaq J White K Buetow DE 《Cell biochemistry and function》2003,21(4):355-361
Chronic pressure overload leads to an increase in the size, i.e. hypertrophy, of cardiomyocytes in the heart. However, the molecular mechanisms underlying this hypertrophy are not understood. Insulin-like growth factor-I (IGF-I) synthesized locally in the heart is known to be associated with the hypertrophic process. So far, however, cardiac IGF-I gene expression in the widely used rat model system has only been shown to be increased when the hypertrophy induced by pressure-overload was already established. Therefore, the question of whether IGF-I serves as an initiating or early-enhancing factor for the cardiac hypertrophy remains unanswered. Here, cardiac hypertension and hypertrophy were rapidly induced in the rat by complete constriction of the abdominal aorta between the origins of the renal arteries. Carotid arterial systolic blood pressure remained unchanged in sham rats but increased rapidly in the pressure-overloaded constricted rats with a sustained hypertension established by 3 days. Hypertrophy of left ventricular (LV) cardiomyocytes in constricted rats also occurred by 3 days. However, this hypertrophy was preceded by increases in LV IGF-I mRNA and protein which occurred within 1 day. These results support the hypothesis that cardiac-synthesized IGF-I is an initiating or early-enhancing factor for hypertrophy of LV cardiomyocytes. 相似文献
48.
Caroline Reynaud Dominique Baas Claudine Gleyzal Dominique Le Guellec Pascal Sommer 《Matrix biology》2008,27(6):547-560
Lysyl oxidase (LOX), a copper-dependent amine oxidase known in mammals to catalyze the cross-linking of collagen and elastin in the extracellular matrix, is a member of a multigenic family. Eight genes encoding lysyl oxidase isoforms have been identified in zebrafish. Recent studies have revealed a critical role for two zebrafish lysyl oxidases-like in the formation of the notochord. We now present the role of Lox in zebrafish development. lox morpholino-mediated knockdown results in a mildly undulated notochord, truncated anterior-posterior axis, tail bending and smaller head. Analyses of morphants show a complete disorganization of muscle somites and neural defects, in accordance with the lox expression pattern. Lox inhibition also induces pigment defects and pharyngeal arch deformities consistent with neural crest dysfunction. Taken together, these data reveal a role for Lox in early morphogenesis, especially in muscle development and neurogenesis, and resume some aspects of physiopathology of copper metabolism. 相似文献
49.
Elevated levels of many metals are toxic to plant roots, but their modes of action are not well understood. We investigated
the toxicities of aluminium (Al), copper (Cu), and lanthanum (La) in solution on the growth and external morphology of 3-d-old
cowpea (Vigna unguiculata L.) roots for periods of up to 48 h. Root elongation rate decreased by 50% at ca. 30 μM Al, 0.3 μM Cu, or 2.0 μM La, accompanied
by a decrease in the distance from the root tip to the proximal lateral root. Kinks developed in some roots 2.0 ± 0.4 mm from
the root apex on exposure to Al or La (but not Cu). Light and scanning electron microscopy showed that soluble Al, Cu, or
La caused similar transverse ruptures to develop > 1 mm from the root apex through the breaking and separation of the rhizodermis
and outer cortex from inner-layers. The metals differed, however, in the range in concentration at which they had this effect;
developing in solutions containing 54 to‑600 μM Al, but only from 0.85 to 1.8 μM Cu or 2.0 to 5.5 μM La. These findings suggest
that Al, Cu, and La bind to the walls of cells, causing increased cell wall rigidity and eventual cell rupturing of the rhizodermis
and outer cortex in the elongating zone. We propose that this is a major toxic effect of Al, and that Cu and La also have
additional toxic effects. 相似文献
50.