首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9245篇
  免费   652篇
  国内免费   532篇
  2024年   20篇
  2023年   173篇
  2022年   251篇
  2021年   319篇
  2020年   333篇
  2019年   397篇
  2018年   377篇
  2017年   296篇
  2016年   332篇
  2015年   393篇
  2014年   549篇
  2013年   758篇
  2012年   297篇
  2011年   414篇
  2010年   306篇
  2009年   391篇
  2008年   433篇
  2007年   439篇
  2006年   361篇
  2005年   329篇
  2004年   289篇
  2003年   244篇
  2002年   255篇
  2001年   206篇
  2000年   170篇
  1999年   172篇
  1998年   163篇
  1997年   151篇
  1996年   134篇
  1995年   148篇
  1994年   127篇
  1993年   130篇
  1992年   103篇
  1991年   110篇
  1990年   94篇
  1989年   104篇
  1988年   80篇
  1987年   83篇
  1986年   68篇
  1985年   77篇
  1984年   77篇
  1983年   68篇
  1982年   75篇
  1981年   34篇
  1980年   32篇
  1979年   27篇
  1978年   13篇
  1977年   10篇
  1976年   4篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
101.
In the present study, we have applied the brain microdialysis technique to investigate the effect of the stimulation of adenylate cyclase on the extracellular levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in the striatum of freely moving rats. Infusion of 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine, or forskolin produced a significant increase in the release of DA. The effect of 8-Br-cAMP was tetrodotoxin, Ca2+, and dose dependent and was saturable. 8-Br-cAMP also caused an increase in the output of DOPAC and HVA. No effects were seen on the output of 5-HIAA, except at the highest 8-Br-cAMP concentration studied. Infusion of 8-Br-cAMP (25 microM, 1.0 mM, and 3.3 mM) together with infusion of (-)-sulpiride (1 microM) or systemic administration of (+/-)-sulpiride (55 mumol/kg i.p.) produced an additive effect on the release of DA. Infusion or peripheral administration of (-)-N-0437 (1 microM or 1 mumol/kg) both decreased the 8-Br-cAMP-induced increase in the release of DA. These results demonstrate that cyclic AMP may stimulate the release of DA, but it is unlikely that this second messenger is linked to presynaptic D2 receptors controlling the release of DA.  相似文献   
102.
We examined the incorporation of [3H]methylenedioxyamphetamine ([3H]MDA) and [3H]amphetamine into rat brain synaptosomes. Saturation studies, using increasing concentrations of nonradioactive ligand, revealed that [3H]-MDA interacted with two saturable sites that were sensitive to boiling of the tissue. Eadee-Scatchard plots of [3H]MDA saturation data were curvilinear; nonlinear curve-fitting analysis of these data suggested the presence of high- and low-affinity [3H]MDA sites of association: KD high = 295 nM, Bmax high = 32 pmol/mg of protein; KD low = 45 microM, Bmax low = 5.2 nmol/mg of protein. Association of [3H]MDA to the low-affinity site was dependent on the presence of isotonic sucrose in the incubation medium. The high capacities of these sites argue against a bimolecular interaction of [3H]MDA with monovalent protein binding sites. [3H]MDA incorporation was reduced under conditions that disrupt the integrity of plasma membranes, such as sonication, incubation in hypotonic media, and incubation in the presence of the detergent digitonin. These data indicate that [3H]MDA incorporation into synaptosomes may represent an internalization and sequestration phenomenon. [3H]MDA incorporation was also reduced by preincubation of the synaptosomal preparation at 37 degrees C or in hypotonic buffer at 4 degrees C, a result suggesting that this sequestration is maintained by an intrasynaptosomal component that is lost under the preincubation conditions described above. [3H]MDA incorporation was pH dependent (maximal at pH 7.5) and temperature sensitive (maximal incorporation occurred at 21 degrees C and was substantially reduced at 37 degrees C). [3H]Amphetamine was also incorporated into synaptosomes, and this incorporation was sensitive to the same physical manipulations of the tissue preparation as [3H]MDA incorporation. The synaptosomal sequestration of both [3H]MDA and [3H]amphetamine was inhibited by permeant cations, such as sodium and potassium, a result suggesting that the proposed intrasynaptosomal component that maintains the sequestration is anionic. Preliminary pharmacological profiles of [3H]MDA and [3H]amphetamine sequestration were identical. The rank order of inhibitor potencies for the incorporation of both ligands was desipramine greater than amphetamine greater than MDA greater than methylphenidate. This order of potency does not correspond to the lipophilicity of the test drugs. The synaptosomal incorporation and sequestration of [3H]MDA, [3H]methylenedioxymethamphetamine, and [3H]amphetamine described in the present report may be important in the molecular mechanism of action of monoamine release induced by the amphetamines.  相似文献   
103.
The opioid modulation of histamine release was studied in rat brain slices labeled with L-[3H]histidine. The K(+)-induced [3H]histamine release from cortical slices was progressively inhibited by the preferential kappa-agonists ketocyclazocine, dynorphin A (1-13), Cambridge 20, spiradoline, U50,488H, and U69,593 in increasing concentrations. In contrast, the mu-agonists morphine, morphiceptin, and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) were ineffective as were the preferential delta-agonists [D-Ala2,D-Leu5]enkephalin (DA-DLE) and [D-Pen2,D-Pen5]enkephalin (DPDPE). Nor-binaltorphimine (nor-BNI) and MR 2266, two preferential kappa-antagonists, reversed the inhibitory effect of the various kappa-agonists more potently than did naloxone, with mean Ki values of 4 nM and 25 nM, respectively. The effects of ketocyclazocine and naloxone also were seen in slices of rat striatum, another brain region known to contain histaminergic nerve endings. We conclude that kappa-opioid receptors, presumably located on histaminergic axons, control histamine release in the brain. However, nor-BNI and naloxone failed, when added alone, to enhance significantly [3H]histamine release from cerebral cortex or striatum, and bestatin, an aminopeptidase inhibitor, failed to decrease K(+)-evoked [3H]histamine release. These two findings suggest that under basal conditions these kappa-opioid receptors are not tonically activated by endogenous dynorphin peptides. The inhibition of cerebral histamine release by kappa-agonists may mediate the sedative actions of these agents in vivo.  相似文献   
104.
Guinea-pig cerebral cortical synaptosomes were preincubated for 60 min with 100 microM D-aspartate, L-aspartate, or L-glutamate. The total D- plus L-aspartate content of the synaptosomal fraction increased to 235%, 195%, or 164%, respectively, of the control. Despite this no increase was seen in the very low KCl evoked, Ca2+-dependent release of aspartate. Preincubation with the three amino acids changed the synaptosomal glutamate content to 78% (D-aspartate), 149% (L-aspartate), or 168% (L-glutamate) of control. However there was no statistically significant effect of these preincubations on the extent of Ca2+-dependent glutamate release. Thus the Ca2+-dependent release of aspartate and glutamate is not determined by the total synaptosomal content of these amino acids. The addition of 0.1-0.5 mM glutamine to the incubation caused a massive appearance of glutamate in the extrasynaptosomal medium. Analysis of specific activities showed that glutamine was hydrolysed directly by an extrasynaptosomal glutaminase, and that intrasynaptosomal glutamate was predominantly labelled by uptake of this glutaminase-derived glutamate. No increase was seen in the extent of Ca2+-dependent release of glutamate (by fluorimetry) either after preincubation with glutamine or in the continued presence of glutamine. Thus we are unable to confirm reports that glutamine expands the transmitter pool of glutamate. The extrasynaptosomal glutaminase activity in the synaptosomal preparation was inhibited by Ca2+ and activated by phosphate. Identical kinetics were obtained with "free" brain mitochondria, confirming the origin of the glutamine-derived glutamate.  相似文献   
105.
Summary Isolated nerve cells fromLymnaea stagnalis were studied using the internal-perfusion and patch-clamp techniques. Patch excision frequently activated a voltage-independent Ba2+-permeable channel with a slope conductance of 27 pS at negative potentials (50mm Ba2+). This channel is not seen in patches on healthy cells and, unlike the voltage-dependent Ca channel, is not labile in isolated patches. The activity of the channel in inside-out patches is unaffected by intracellular ATP, Ca2+ below 1mm or the catalytic subunit of cAMP-dependent protein kinase but is reversibly blocked by millimolar intracellular Ca2+ or Ba2+. The channel can be activated in on-cell patches by either internal perfusion with high Ca2+ or the long-term internal perfusion of low Ca2+ solutions not containing ATP. These channels may carry the inward Ca2+ current which causes a regenerative increase in intracellular Ca+ when snail neurons are perfused with high Ca2+ solutions. High internal Ca2+, or long periods of internal perfusion with ATP-free solutions, induces an increase in a resting (–50 mV) whole-cell Ba2+ conductance. This conductance can be turned off by returning the intracellular perfusate to a low Ca2+ solution containing ATP and Mg2+. The activity of this channel appears to have an opposite dependence on intracellular conditions to that of the voltage-dependent Ca channel.  相似文献   
106.
Dopamine (DA) is synthesized and released not only from the terminals of the nigrostriatal dopaminergic neuronal pathway, but also from the dendrites in the substantia nigra. We have investigated the regulation of the DA turnover, the DA synthesis rate, and the DA release in the substantia nigra pars compacts (SNpc) and pars reticulata (SNpr) in vivo. As a measure of DA turnover, we have assessed the concentrations of 3,4-dihydroxyphenylacetic acid and homovanillic acid. As a measure of the DA synthesis rate, we have determined the 3,4-dihydroxyphenylalanine accumulation after inhibition of aromatic L-amino acid decarboxylase by 3-hydroxybenzylhydrazine. As a measure of DA release, we have investigated the disappearance rate of DA after inhibition of its synthesis by alpha-methyl-p-tyrosine and the 3-methoxytyramine accumulation following monoamine oxidase inhibition by pargyline. Both the DA turnover and the DA synthesis rate increased following treatment with the DA receptor antagonist haloperidol and decreased following treatment with the DA receptor agonist apomorphine in the SNpc and in the SNpr, but the effects of the drugs were less pronounced than in the striatum. gamma-Butyrolactone treatment, which suppresses the firing of the dopaminergic neurons, increased the DA synthesis rate in the striatum (165%), but had no such effect in the SNpc or SNpr. Haloperidol, apomorphine, and gamma-butyrolactone increased, decreased, and abolished, respectively, the DA release in the striatum, but the drugs had no or only slight effects on the alpha-methyl-p-tyrosine-induced DA disappearance and on the pargyline-induced 3-methoxytyramine accumulation in the SNpc or SNpr. Taken together, these results indicate that the DA synthesis rate, but not the DA release, are influenced by DA receptor activity and neuronal firing in the SNpc and SNpr. This is in contrast to the situation in the striatum, where both the DA synthesis rate and the DA release are under such control.  相似文献   
107.
Recently, pipecolic acid (PA) has been involved in the functioning of the GABAergic system. In the present work we have studied the effect of PA on GABA uptake and release in cerebral cortex slices. PA (100 M) was able to increase the release of [3H]GABA (90%) stimulated by mild depolarization with 15 mM potassium. If during the labeling of the tissue with [3H]GABA, -alanine was present, PA also enhanced the release (42%). However, when nipecotic acid was present instead -alanine, no stimulation of [3H]GABA release by potassium was observed neither in the control nor in the presence of PA. Spontaneous release was not affected by PA in any of the experimental conditions tested. In uptake experiments, only when -alanine was present in the medium PA significantly diminished the uptake (36%) of [3H]GABA. These results suggest that the effect of PA is mostly at the presynaptic level, inhibiting the neuronal GABA uptake and/or enhancing its release.  相似文献   
108.
Chronic exposure of dissociated cerebellar cultures to 50M kainate results in a complete loss of [3H]-GABA release which is a marker of GABAergic interneurons. No loss of granule cells was found and the glutamatergic nature of the granule cells appeared unaltered by the kainate treatment, since evoked release of [3H]-d-aspartate was maintained after kainate exposure. Glial cells in such cultures are virtually eliminated by treatment with an antimitotic such as cytarabin. In consequence a pure culture of cerebellar granule cells virtually free of stellate, basket and glial cells may be obtained by a combined chronic treatment of the cultures with kainate and cytarabin.  相似文献   
109.
Insertion of foreign DNA into Ti plasmid-derived vectors in Agrobacterium tumefaciens is currently the most frequently used strategy for generating transgenic plants in a wide variety of species. Limitations of the host range of Agrobacterium restrict its usefulness in many cases, particularly when dealing with monocotyledonous plants. The objective of this presentation is to briefly discuss the efficiency of the transformation process utilized by Agrobacterium tumefaciens , potential barriers to efficient transformation by Agrobacterium that result in limitation of its useful host range, and how an understanding of the successful Agrobacterium /plant cell interaction might lead to advances in a variety of DNA delivery methodologies.  相似文献   
110.
Botulinum C2 toxin is known to ADP-ribosylate actin. The toxin effect was studied on [3H]noradrenaline secretion of PC12 cells. [3H]Noradrenaline release was stimulated five- to 15-fold by carbachol (100 microM) or K+ (50 mM) and 10-30-fold by the ionophore A23187 (5 microM). Pretreatment of PC12 cells with botulinum C2 toxin for 4-8 h at 20 degrees C, increased carbachol-, K+-, and A23187-induced, but not basal, [3H]noradrenaline release maximally 1.5-to three-fold, whereas approximately 75% of the cellular actin pool was ADP-ribosylated. Treatment of PC12 cells with botulinum C2 toxin for up to 1 h at 37 degrees C also increased stimulated [3H]noradrenaline secretion, whereas toxin treatment for greater than 1 h decreased the enhanced [3H]noradrenaline release stimulated by carbachol and K+ but not by A23187. Concomitantly with toxin-induced stimulation of secretion, 20-50% of the cellular actin was ADP-ribosylated, whereas greater than 60% of actin was modified when exocytosis was attenuated. The data indicate that ADP-ribosylation of actin by botulinum C2 toxin largely modulates stimulation of [3H]noradrenaline release. Moreover, the biphasic toxin effects suggest that distinct mechanisms are involved in the role of actin in secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号