首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2542篇
  免费   159篇
  国内免费   147篇
  2024年   6篇
  2023年   29篇
  2022年   48篇
  2021年   43篇
  2020年   57篇
  2019年   119篇
  2018年   114篇
  2017年   78篇
  2016年   86篇
  2015年   87篇
  2014年   176篇
  2013年   232篇
  2012年   74篇
  2011年   120篇
  2010年   128篇
  2009年   185篇
  2008年   182篇
  2007年   151篇
  2006年   131篇
  2005年   112篇
  2004年   97篇
  2003年   98篇
  2002年   86篇
  2001年   30篇
  2000年   23篇
  1999年   37篇
  1998年   29篇
  1997年   31篇
  1996年   24篇
  1995年   23篇
  1994年   22篇
  1993年   16篇
  1992年   14篇
  1991年   17篇
  1990年   9篇
  1989年   11篇
  1988年   8篇
  1987年   13篇
  1986年   9篇
  1985年   8篇
  1984年   14篇
  1983年   8篇
  1982年   13篇
  1981年   12篇
  1980年   12篇
  1979年   8篇
  1978年   6篇
  1977年   5篇
  1976年   3篇
  1970年   1篇
排序方式: 共有2848条查询结果,搜索用时 15 毫秒
201.
As a model of Brownian motor we consider the jump diffusion motion of a particle in the presence of an asymmetric periodic potential with a unique minimum and subject to half-period space shifts at the instants of occurrence of two Poisson processes. The relevant quantities, i.e., probability current, effective driving force, stall force, power and efficiency of the motor are explicitly calculated as averages of certain functions of the random variable representing the particle position.  相似文献   
202.
Ultrasound and matter--physical interactions   总被引:3,自引:0,他引:3  
The basic physical characteristics of ultrasound waves are reviewed in terms of the typical displacements, velocities, accelerations and pressures generated in various fluid media as a function of frequency. The effects on wave propagation of interfaces are considered, and the way in which waves are reflected, transmitted and mode converted at interfaces introduced. Then the nonlinear propagation of high amplitude ultrasound is explained, and its consequences, including the generation of harmonic frequencies and enhanced attenuation, considered. The absorption of ultrasonic waves and the resulting heat deposition in absorbing media are described together with factors determining the resulting temperature rises obtained. In the case of tissue these include conduction and perfusion. The characteristics of cavitation in fluid media are also briefly covered. Finally, secondary nonlinear physical effects are described. These include radiation forces on interfaces and streaming in fluids.  相似文献   
203.
Steered molecular dynamics simulations have previously been used to investigate the mechanical properties of the extracellular matrix protein fibronectin. The simulations suggest that the mechanical stability of the tenth type III domain from fibronectin (FNfn10) is largely determined by a number of critical hydrogen bonds in the peripheral strands. Interestingly, the simulations predict that lowering the pH from 7 to approximately 4.7 will increase the mechanical stability of FNfn10 significantly (by approximately 33 %) due to the protonation of a few key acidic residues in the A and B strands. To test this simulation prediction, we used single-molecule atomic force microscopy (AFM) to investigate the mechanical stability of FNfn10 at neutral pH and at lower pH where these key residues have been shown to be protonated. Our AFM experimental results show no difference in the mechanical stability of FNfn10 at these different pH values. These results suggest that some simulations may overestimate the role played by electrostatic interactions in determining the mechanical stability of proteins.  相似文献   
204.
Spectrin is an ubiquitous protein in metazoan cells, and its flexibility is one of the keys to maintaining cellular structure and organization. Both alpha-spectrin and beta-spectrin polypeptides consist primarily of triple coiled-coil modular repeat units, and two important factors that determine spectrin flexibility are the bending flexibility between two consecutive repeat units and the conformational flexibility of individual repeat units. Atomistic molecular dynamics (MD) simulations are used here to study double spectrin repeat units (DSRUs) from the human erythrocyte beta-spectrin (HEbeta89) and the chicken brain alpha-spectrin (CBalpha1617). From the results of MD simulations, a highly conserved Trp residue in the A-helix of most repeat units that has been suggested to be important in conferring stability to the coiled-coil structures is found not to have a significant effect on the conformational flexibility of individual repeat units. Characterization of the bending flexibility for two consecutive repeats of spectrin via atomistic simulations and coarse-grained (CG) modeling indicate that the bending flexibility is governed by the interactions between the AB-loop of the first repeat unit, the BC-loop of the second repeat unit and the linker region. Specifically, interactions between residues in these regions can lead to a strong directionality in the bending behavior of two repeat units. The biological implications of these finding are discussed.  相似文献   
205.
Discoidin domain receptor 1 (DDR1) is a widely expressed tyrosine kinase receptor which binds to and gets activated by collagens including collagen type 1. Little is understood about the interaction of DDR1 with collagen and its possible functional implications. Here, we elucidate the binding pattern of the DDR1 extracellular domain (ECD) to collagen type 1 and its impact on collagen fibrillogenesis. Our in vitro assays utilized DDR1-Fc fusion proteins, which contain only the ECD of DDR1. Using surface plasmon resonance, we confirmed that further oligomerization of DDR1-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Single-molecule imaging by means of atomic force microscopy revealed that DDR1 oligomers bound at overlapping or adjacent collagen molecules and were nearly absent on isolated collagen molecules. Interaction of DDR1 oligomers with collagen was found to modulate collagen fibrillogenesis both in vitro and in cell-based assays. Collagen fibers formed in the presence of DDR1 had a larger average diameter, were more cross-linked and lacked the native banded structure. The presence of DDR1 ECD resulted in "locking" of collagen molecules in an incomplete fibrillar state both in vitro and on surfaces of cells overexpressing DDR1. Our results signify an important functional role of the DDR1 ECD, which occurs naturally in kinase-dead isoforms of DDR1 and as a shedded soluble protein. The modulation of collagen fibrillogenesis by the DDR1 ECD elucidates a novel mechanism of collagen regulation by DDR1.  相似文献   
206.
Human pathologies often originate from molecular disorders. Therefore, imaging technology as one of the bases for the identification and understanding of pathologies must provide views of single molecules at subnanometer resolution. Membrane proteins mediate many of life's most important processes, and their malfunction is often lethal or leads to severe disease. The membrane proteins aquaporin-0 (AQP0) and connexons form junctional microdomains between healthy lens core cells in which AQP0 form square arrays surrounded by connexons. Malfunction of both proteins results in the formation of cataract. We have used high-resolution atomic force microscopy (AFM) to image junctional microdomains in membranes from an individual human eye lens with senile cataract. Images at subnanometer resolution report individual helix-connecting loops of four amino acid residues on the AQP0 surface. We describe the supramolecular assembly and the conformational state of AQP0 in junctional microdomains, where a mixture of truncated junctional and full-length water channel AQP0 form square arrays. Imaging of microdomain borders revealed individual AQP0 tetramers and no associated connexon, indicating a lack of metabolite transport, waste accumulation, and enlarged regions of non-adhering membranes, causing cataract in this individual. This first high-resolution view of the membrane of this pathological human tissue provides insights into cataract pathology at the single membrane protein level, and indicates the power of the AFM as a future tool in medical imaging at subnanometer resolution.  相似文献   
207.
Understanding the heterogeneity of the soluble oligomers and protofibrillar structures that form initially during the process of amyloid fibril formation is a critical aspect of elucidating the mechanism of amyloid fibril formation by proteins. The small protein barstar offers itself as a good model protein for understanding this aspect of amyloid fibril formation, because it forms a stable soluble oligomer, the A form, at low pH, which can transform into protofibrils. The mechanism of formation of protofibrils from soluble oligomer has been studied by multiple structural probes, including binding to the fluorescent dye thioflavin T, circular dichroism and dynamic light scattering, and at different temperatures and different protein concentrations. The kinetics of the increase in any probe signal are single exponential, and the rate measured depends on the structural probe used to monitor the reaction. Fastest is the rate of increase in the mean hydrodynamic radius, which grows from a value of 6 nm for the A form to 20 nm for the protofibril. Slower is the rate of increase in thioflavin T binding capacity, and slowest is the rate of increase in circular dichroism at 216 nm, which occurs at about the same rate as that of the increase in light scattering intensity. The dynamic light scattering measurements suggest that the A form transforms completely into larger size aggregates at an early stage during the aggregation process. It appears that structural changes within the aggregates occur at the late stages of assembly into protofibrils. For all probes, and at all temperatures, no initial lag phase in protofibril growth is observed for protein concentrations in the range of 1 microM to 50 microM. The absence of a lag phase in the increase of any probe signal suggests that aggregation of the A form to protofibrils is not nucleation dependent. In addition, the absence of a lag phase in the increase of light scattering intensity, which changes the slowest, suggests that protofibril formation occurs through more than one pathway. The rate of aggregation increases with increasing protein concentration, but saturates at high concentrations. An analysis of the dependence of the apparent rates of protofibril formation, determined by the four structural probes, indicates that the slowest step during protofibil formation is lateral association of linear aggregates. Conformational conversion occurs concurrently with lateral association, and does so in two steps leading to the creation of thioflavin T binding sites and then to an increase in beta-sheet structure. Overall, the study indicates that growth during protofibril formation occurs step-wise through progressively larger and larger aggregates, via multiple pathways, and finally through lateral association of critical aggregates.  相似文献   
208.
Voltage-dependent anion channels (VDACs) are major constituents of the outer mitochondrial membrane (OMM). These primary transporters of nucleotides, ions and metabolites mediate a substantial portion of the OMM molecular traffic. To study the native supramolecular organization of the VDAC, we have isolated, characterized and imaged OMMs from potato tubers. SDS-PAGE and mass spectrometry of OMMs revealed the presence of the VDAC isoforms POM34 and POM36, as well as the translocase of the OMM complex. Tubular two-dimensional crystals of the VDAC spontaneously formed after incubation of OMMs for two to three months at 4 degrees C. Transmission electron microscopy revealed an oblique lattice and unit cells housing six circular depressions arranged in a hexagon. Atomic force microscopy of freshly isolated OMMs demonstrated (i) the existence of monomers to tetramers, hexamers and higher oligomers of the VDAC and (ii) its spatial arrangement within the oligomers in the native membrane. We discuss the importance of the observed oligomerization for modulation of the VDAC function, for the binding of hexokinase and creatine kinase to the OMM and for mitochondria-mediated apoptosis.  相似文献   
209.
Abnormal or excessive force on the anterior hip joint may cause anterior hip pain, subtle hip instability and a tear of the acetabular labrum. We propose that both the pattern of muscle force and hip joint position can affect the magnitude of anterior joint force and thus possibly lead to excessive force and injury. The purpose of this study was to determine the effect of hip joint position and of weakness of the gluteal and iliopsoas muscles on anterior hip joint force. We used a musculoskeletal model to estimate hip joint forces during simulated prone hip extension and supine hip flexion under four different muscle force conditions and across a range of hip extension and flexion positions. Weakness of specified muscles was simulated by decreasing the modeled maximum force value for the gluteal muscles during hip extension and the iliopsoas muscle during hip flexion. We found that decreased force contribution from the gluteal muscles during hip extension and the iliopsoas muscle during hip flexion resulted in an increase in the anterior hip joint force. The anterior hip joint force was greater when the hip was in extension than when the hip was in flexion. Further studies are warranted to determine if increased utilization of the gluteal muscles during hip extension and of the iliopsoas muscle during hip flexion, and avoidance of hip extension beyond neutral would be beneficial for people with anterior hip pain, subtle hip instability, or an anterior acetabular labral tear.  相似文献   
210.
The adaptation to extreme concentrations of Ca2+ and its consequence on the properties of the 45Ca2+ transport were studied in submerged mycelia of Trichoderma viride. The adaptation to low [Ca2+]o did not cause changes in kinetic parameters of the 45Ca2+ influx but the adaptation to high [Ca2+]o increased the KM(Ca2+). The Vmax of the 45Ca2+ influx decreased with the age of (non-adapted) mycelia with concomitant decrease of the KM(Ca2+) these changes were prevented in mycelia adapted to high Ca2+. High [Ca2+]o decreased the stimulation by the uncoupler, 3, 3′, 4′, 5-tetrachloro salicylanilide (TCS) (30 μM), as compared to the control, whereas the Ca2+ chelator, EGTA, stimulated it. In the aged mycelia, the stimulation by TCS of the 45Ca2+ influx faded away, in parallel with the activity of the H+-ATPase. The 45Ca2+ efflux from mycelia was affected by TCS in a similar way as the 45Ca2+ influx. The results demonstrate the adaptive responses of transport processes participating in the mycelial Ca2+ homeostasis and ageing are in agreement with a notion that both Ca2+-influx and-efflux are coupled by the H+-homeostasis at the plasma membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号