首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7395篇
  免费   553篇
  国内免费   498篇
  8446篇
  2024年   19篇
  2023年   104篇
  2022年   109篇
  2021年   128篇
  2020年   219篇
  2019年   212篇
  2018年   209篇
  2017年   249篇
  2016年   234篇
  2015年   194篇
  2014年   247篇
  2013年   486篇
  2012年   215篇
  2011年   330篇
  2010年   209篇
  2009年   391篇
  2008年   405篇
  2007年   385篇
  2006年   314篇
  2005年   327篇
  2004年   293篇
  2003年   243篇
  2002年   222篇
  2001年   190篇
  2000年   209篇
  1999年   187篇
  1998年   155篇
  1997年   148篇
  1996年   145篇
  1995年   120篇
  1994年   140篇
  1993年   146篇
  1992年   144篇
  1991年   130篇
  1990年   120篇
  1989年   98篇
  1988年   69篇
  1987年   87篇
  1986年   59篇
  1985年   84篇
  1984年   88篇
  1983年   49篇
  1982年   69篇
  1981年   60篇
  1980年   56篇
  1979年   39篇
  1978年   28篇
  1977年   36篇
  1976年   24篇
  1975年   9篇
排序方式: 共有8446条查询结果,搜索用时 12 毫秒
101.
The relative importance of respiration and organic carbon release to the efficiency of carbon specific growth of Skeletonema costatum (Grev.) Clave was evaluated over a light range from 1500–15 μE · m?2· s?1. Net growth efficiency ranged from 0.45–0.69 with a maximum at 130 μE · m?2· s?1. Respiration was 93% or more of the variations in growth efficiency. Organic carbon release ranged from 0–7% of gross production and increased with light intensity. Carbon specific particulate production was a hyperbolic function of incident light intensity and was related exponentially to particulate carbon production per unit chlorophyll a. Full sunlight conditions, 1500 μE · m?2· s?1, did not induce photoinhibition of gross production. Variations in the efficiency of growth of S. costatum were minimized over a wide range of light intensities mainly because of variations in cellular pigments which permitted the efficient utilization of available light energy, and a reduction in the losses of carbon which increases the growth rate, possibly as a consequence of the recycling of respired carbon within the cell.  相似文献   
102.
Optimum growth conditions for the fermentation of non-concentrated whey permeate by Kluyveromyces fragilis NRRL 665 have been defined. Use of 3.75 g yeast extract l?1, a growth temperature of 38°C and a pH of 4.0 allowed a maximum productivity of 5.23 g ethanol l?1 h?1 in continuous culture with a yield 91% of theoretical. Complete batch fermentation of permeate with 100 g lactose l?1 was possible with a maximum specific growth rate of 0.276 h?1 without any change in ethanol yield. Fermentation of concentrated permeate resulted, however, in a general decrease of specific substrate consumption rate, demonstrated by the inability to completely convert an initial 90 or 150 g lactose l?1 in continuous culture, even at dilution rates as low as 0.05 and 0.08 h?1, respectively. The decrease could be related to substrate inhibition, to an increase in osmotic pressure caused by lactose and salts, and to ethanol inhibition of both alcohol and biomass yield. The decrease in specific productivity could be counterbalanced by use of high cell density cultures, obtained by cell recycle of K. fragilis. Fermentation of a non-concentrated permeáte at a dilution rate of 1 h?1 resulted in a productivity of 22 g l?1 h?1 at 22 g ethanol l?1. Cell recycle using flocculating Kluyveromyces lactis NCYC 571 was also tested. With this strain a productivity of 9.3 g l?1 h?1 at 45 g product l?1 was attained at a dilution rate of 0.2 h?1, with an initial lactose concentration of 95 g l?1.  相似文献   
103.
Effect of iron concentration on hydrogen fermentation   总被引:11,自引:0,他引:11  
The effect of the iron concentration in the external environment on hydrogen production was studied using sucrose solution and the mixed microorganisms from a soybean-meal silo. The iron concentration ranged from 0 to 4000 mgFeCl2 l−1. The temperature was maintained at 37°C. The maximum specific hydrogen production rate was found to be 24.0 mlg−1 VSSh−1 at 4000 mgFeCl2 l−1. The specific production rate of butyrate increased with increasing iron concentration from 0 to 20 mgFeCl2 l−1, and decreased with increasing iron concentration from 20 to 4000 mgFeCl2 l−1. The maximum specific production rates of ethanol (682 mgg−1 VSSh−1) and butanol (47.0 mgg−1 VSSh−1) were obtained at iron concentrations of 5 and 3 mgFeCl2 l−1, respectively. The maximum hydrogen production yield of 131.9 mlg−1 sucrose was obtained at the iron concentration of 800 mgFeCl2 l−1. The maximum yields of acetate (389.3 mgg−1 sucrose), propionate (37.8 mgg−1 sucrose), and butyrate (196.5 mg g−1 sucros) were obtained at iron concentrations of 3, 200 and 200 mgFeCl2 l−1, respectively. The sucrose degradation efficiencies were close to 1.0 when iron concentrations were between 200 and 800 mgFeCl2 l−1. The maximum biomass production yield was 0.283 gVSSg−1 sucrose at an iron concentration of 3000 mgFeCl2 l−1.  相似文献   
104.
《植物生态学报》2017,41(9):925
Aims Net primary production (NPP) is the input to terrestrial ecosystem carbon pool. Climate and land use change affect NPP significantly. Shrublands occupy more than 20% of the terrestrial area of China, and their NPP is comparable to those of the forests. Our objective was to estimate China shrubland NPP from 2001 to 2013, and to analyze its variation and response to climate change.Methods We used a Carnegie-Ames-Stanford Approach (CASA) model to estimate the NPP of six shrubland types in China from 2001 to 2013. Furthermore, we used Theil-Sen slope combined with Mann-kendall test to analyze its spatial variation and a linear regression of one-variable model to analyze its inter- and intra-annual variation. Finally, a multi-factor linear regression model was used to analyze its response to climate change.Important findings We found the annual mean NPP of China shrubland was 281.82 g•m-2•a-1. The subtropical evergreen shrubland has the maximum NPP of 420.47 g•m-2•a-1, while the high cold desert shrubland has the minimum NPP of 52.65 g•m-2•a-1. The countrywide shrublands NPP increased at the rate of 1.23 g•m-2•a-1, the relative change rate was 5.99%. The temperate deciduous shrubland NPP increased the fastest with a speed of 3.05 g•m-2•a-1 and subalpine evergreen shrubland had a decreasing trend with a speed of -0.73 g•m-2•a-1. Moreover, the other four shrublands NPP had a growing trend, only subalpine deciduous shrubland NPP did not change significantly. The response of NPP to climate change of different seasons varies to different shrubland types. In general, the NPP variation was mainly affected by precipitation, and the spring warming also contributed to it. The increase of countrywide shrubland NPP may promote its contribution to the regional ecosystem function.  相似文献   
105.
Entomopathogenic fungi, such as Beauveria bassiana and Metarhizium anisopliae, are environmentally friendly biocontrol agents (BCAs) against various arthropod pests. We provide an overview to the past-decade advances in fungal BCA research and application in China. Since 1960s, fungal BCAs have been mass-produced for application and at present, thousands of tons of their formulations are annually applied to control forest, agricultural, greenhouse and grassland insect pests throughout the country. Apart from technical advances in mass production, formulation and application of fungal BCAs, basic studies on the genomics, molecular biology, genetic engineering and population genetics of fungal entomopathogens have rapidly progressed in the past few years in China. The completed genomic studies of M. anisopliae, Metarhizium acridum, B. bassiana and Cordyceps militaris provide profound insights into crucial gene functions, fungal pathogenesis, host–pathogen interactions and mechanisms involved in fungal sexuality. New knowledge gained from the basic studies has been applied to improve fungal virulence and stress tolerance for developing more efficacious and field-persistent mycoinsecticides by means of microbial biotechnology, such as genetic engineering. To alleviate environmental safety concerns, more efforts are needed to generate new data not only on the effects of engineered BCAs on target and non-target arthropods but also on their potential effects on gene flow and genetic recombination before field release.  相似文献   
106.
Net ecosystem productivity (NEP), net primary productivity (NPP), and water vapour exchange of a mature Pinus ponderosa forest (44°30′ N, 121°37′ W) growing in a region subject to summer drought were investigated along with canopy assimilation and respiratory fluxes. This paper describes seasonal and annual variation in these factors, and the evaluation of two generalized models of carbon and water balance (PnET‐II and 3‐PG) with a combination of traditional measurements of NPP, respiration and water stress, and eddy covariance measurements of above‐and below‐canopy CO2 and water vapour exchange. The objective was to evaluate the models using two years of traditional and eddy covariance measurements, and to use the models to help interpret the relative importance of processes controlling carbon and water vapour exchange in a water‐limited pine ecosystem throughout the year. PnET‐II is a monthly time‐step model that is driven by nitrogen availability through foliar N concentration, and 3‐PG is a monthly time‐step quantum‐efficiency model constrained by extreme temperatures, drought, and vapour pressure deficits. Both models require few parameters and have the potential to be applied at the watershed to regional scale. There was 2/3 less rainfall in 1997 than in 1996, providing a challenge to modelling the water balance, and consequently the carbon balance, when driving the models with the two years of climate data, sequentially. Soil fertility was not a key factor in modelling processes at this site because other environmental factors limited photosynthesis and restricted projected leaf area index to ~1.6. Seasonally, GEP and LE were overestimated in early summer and underestimated through the rest of the year. The model predictions of annual GEP, NEP and water vapour exchange were within 1–39% of flux measurements, with greater disparity in 1997 because soil water never fully recharged. The results suggest that generalized models can provide insights to constraints on productivity on an annual basis, using a minimum of site data.  相似文献   
107.
108.
By harvesting scattered large trees, selective logging increases light availability and thereby stimulates growth and crown expansion at early‐life stage among remnant trees. We assessed the effects of logging on total and merchantable bole (i.e., lowest branch at crown base) heights on 952 tropical canopy trees in French Guiana. We observed reductions in both total (mean, ?2.3 m) and bole (mean, ?2.0 m) heights more than a decade after selective logging. Depending on local logging intensity, height reductions resulted in 2–13 percent decreases in aboveground tree biomass and 3–17 percent decreases in bole volume. These results highlight the adverse effects of logging at both tree and stand levels. This decrease in height is a further threat to future provision of key environmental services, such as timber production and carbon sequestration.  相似文献   
109.
The relative contribution of ruminal short-chain fatty acid (SCFA) absorption and salivary buffering to pH regulation could potentially change under different dietary conditions. Therefore, the objective of this study was to investigate the effects of altering the ruminal supply of rapidly fermentable carbohydrate (CHO) on absorptive function and salivation in beef cattle. Eight heifers (mean BW±SD=410±14 kg) were randomly allocated to two treatments in a crossover design with 37-day periods. Dietary treatments were barley silage at 30% low forage (LF) or 70% high forage (HF) of dietary dry matter (DM), with the remainder of the diet consisting of barley grain (65% or 25% on a DM basis) and a constant level (5%) of supplement. The LF and HF diets contained 45.3% and 30.9% starch, and 4.1% and 14.0% physically effective fiber (DM basis), respectively. Ruminal pH was continuously measured from day 17 to day 23, whereas ruminal fluid was collected on day 23 to determine SCFA concentration. Ruminal liquid passage rate was determined on day 23 using Cr-ethylenediaminetetraacetic acid. Eating or resting salivation was measured by collecting masticate (days 28 and 29) or saliva samples (days 30 and 31) at the cardia, respectively. On days 30 and 31, the temporarily isolated and washed reticulo-rumen technique was used to measure total, and Cl-competitive (an indirect measure of protein-mediated transport) absorption of acetate, propionate and butyrate. As a result of the higher dietary starch content and DM intake, the ruminal supply of rapidly fermentable CHO, total ruminal SCFA concentration (118 v. 95 mM; P<0.001) and osmolality (330 v. 306 mOsm/kg; P=0.018) were greater in cattle fed LF compared with HF. In addition, feeding LF resulted in a longer duration (2.50 v. 0.09 h/day; P=0.02) and a larger area (0.44 v. 0.01 (pH×h)/day; P=0.050) that pH was below 5.5. There was no diet effect on total and Cl-competitive absorption (mmol/h and %/h) of acetate, propionate, butyrate and total SCFA (acetate+propionate+butyrate), but eating salivation was less (131 v. 152 ml/min; P=0.02), and resting salivation tended to be less (87 v. 104 ml/min; P=0.10) in cattle fed an LF diet. In summary, lower ruminal pH in cattle with greater rapidly fermentable CHO intake was attributed to an increase in SCFA production and decrease in salivation, which were not compensated for by an increase in epithelial permeability.  相似文献   
110.
This laboratory study reports some reproductive responses of the copepod Acartia bifilosa to rapid variations in pH. The imposed changes mimic those that copepods could experience due to coastal upwelling, changed mixing conditions or vertical migration. We measured effects of low pH on egg production, hatching and early nauplii development (H0: no effects on response variables between low and ambient pH). On treatment with low pH, we found positive effects on egg production rate and nauplii development time. The positive response to low pH could be an initial stress response or show that A. bifilosa is tolerant to the experimental pH values. The result suggests that A. bifilosa is adapted to pH changes as it performs daily migrations between the depths with differing pH. It could also be advantageous for population development if eggs hatch at high speed and so reduce the possibility that they will sink into anoxic and low pH waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号