首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3463篇
  免费   401篇
  国内免费   38篇
  3902篇
  2024年   10篇
  2023年   67篇
  2022年   43篇
  2021年   79篇
  2020年   145篇
  2019年   192篇
  2018年   148篇
  2017年   196篇
  2016年   152篇
  2015年   177篇
  2014年   228篇
  2013年   371篇
  2012年   133篇
  2011年   147篇
  2010年   123篇
  2009年   181篇
  2008年   172篇
  2007年   196篇
  2006年   171篇
  2005年   117篇
  2004年   113篇
  2003年   102篇
  2002年   98篇
  2001年   65篇
  2000年   44篇
  1999年   59篇
  1998年   54篇
  1997年   57篇
  1996年   41篇
  1995年   40篇
  1994年   25篇
  1993年   25篇
  1992年   30篇
  1991年   14篇
  1990年   14篇
  1989年   10篇
  1988年   8篇
  1987年   10篇
  1986年   10篇
  1985年   12篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   1篇
  1979年   5篇
排序方式: 共有3902条查询结果,搜索用时 31 毫秒
961.
Sewage disposal in natural waters is a common problem in most countries. Large inputs of organic matter and nutrients from raw sewage to a weak hydrodynamic environment may lead to deterioration of the water quality. Widely available riverine and estuarine models such as QUAL-2E and MUDLARK can be used to adequately model these situations. Beberibe is a low hydrodynamic estuary that runs through a densely populated region in the Recife Metropolitan Area (RMA), Northeast Brazil, and receives untreated domestic sewage from aproximately 200000 inhabitants. The mouth of the estuary is shallow and tortuous, causing a large reduction in tidal propagation. The low river flow is strongly influenced by rain seasonality at the upstream boundary, with mean values varying from 4.9 m3 s–1 in the wet winter to 1.4 m3 s–1 during the dry summer. A major program to build sewage plants was planned to increase the water quality of the RMA rivers. This study focuses on water quality modelling of the Beberibe estuary basin, formed by the Beberibe River and two small tributaries. Numerical simulations of temperature, dissolved oxygen, biochemical oxygen demand, nitrate, ammonia, phosphate and faecal coliforms were carried out, targeting the expected population growth in the following 20 years. The QUAL-2E and the MUDLARK models were coupled at the tidal intrusion limit, with the estuarine sector modelled by the MUDLARK while QUAL-2E was used in the upper river. A longitudinal dispersion coefficient related to tidal excursion was introduced into the MUDLARK algorithm to better determine the tidal effect on the distribution of water quality variables. Both models were calibrated successfully and verified with a 4 year water quality data series from the Pernambuco State Environmental Agency (Companhia Pernambucana do Meio Ambiente – CPRH). Results showed that the river flow is a major factor controlling the water quality. Even the most efficient treatment applied was not able to bring water quality up to all desirable levels during dry summer months, mainly considering dissolved oxygen and biochemical oxygen demand. Results also confirm that the spring-neap cycle does not significantly affect water quality, probably due to the strong tidal attenuation at the estuary mouth.  相似文献   
962.
963.
The newly described molossid bat, Chaerephon atsinanana Goodman et al., 2010, endemic to eastern Madagascar, shows notably high levels of phylogeographic and genetic structure compared with allopatric Chaerephon leucogaster Grandidier, 1869 from western Madagascar. Such highly significant structuring of haplotypes among altitudinally and latitudinally stratified population groups is contrary to the expected panmixia in strong flying bats. The null model of concordance in historical demographic patterns across these two Chaerephon species was not supported. Mismatch and Bayesian skyline analyses indicated ancient stable C. atsinanana populations of constant size during the last two major Pleistocene glacial periods, making retreat into and expansion from glacial refugia an unlikely explanation for such high levels of structure, in accordance with expectations for tropical bats. Analyses were consistent with post‐refugial population expansion in the less diverse and structured C. leucogaster during the end of the last Pleistocene glacial period. We hypothesise that the pronounced genetic structuring in C. atsinanana may result from female philopatry. Furthermore, differing demographic histories of the two species may have been shaped by differing climate or habitat preferences, consistent with evidence from MaxEnt ecological niche modelling, which shows differences in variables influencing the current predicted distributions. Fossil Quaternary pollen deposits further indicate greater stability in past climatic patterns in eastern versus western Madagascar. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 18–40.  相似文献   
964.
Understanding how specific environmental factors shape gene flow while disentangling their importance relative to the effects of geographical isolation is a major question in evolutionary biology and a specific goal of landscape genetics. Here, we combine information from nuclear microsatellite markers and ecological niche modelling to study the association between climate and spatial genetic structure and variability in Engelmann oak (Quercus engelmannii), a wind-pollinated species with high potential for gene flow. We first test whether genetic diversity is associated with climatic niche suitability and stability since the Last Glacial Maximum (LGM). Second, we use causal modelling to analyse the potential influence of climatic factors (current and LGM niche suitability) and altitude in the observed patterns of genetic structure. We found that genetic diversity is negatively associated with local climatic stability since the LGM, which may be due to higher immigration rates in unstable patches during favourable climatic periods and/or temporally varying selection. Analyses of spatial genetic structure revealed the presence of three main genetic clusters, a pattern that is mainly driven by two highly differentiated populations located in the northern edge of the species distribution range. After controlling for geographic distance, causal modelling analyses showed that genetic relatedness decreases with the environmental divergence among sampling sites estimated as altitude and current and LGM niche suitability. Natural selection against nonlocal genotypes and/or asynchrony in reproductive phenology may explain this pattern. Overall, this study suggests that local environmental conditions can shape patterns of genetic structure and variability even in species with high potential for gene flow and relatively small distribution ranges.  相似文献   
965.
The paper deals with the hypothesis that ecosystems have well-defined potentials of biodiversity. These potentials can be quantified as information entropy of the corresponding ecosystem type. The hypothesis is verified for the diversity of plant species.

A vegetation database of North-Central European forests containing more than 12000 relevés is analyzed computationally. The samples are classified into ecosystem types that are homogeneous with respect to vegetation patterns, ecological site factors, and, implicitly, with respect to ecosystem processes. Growing numbers of relevés are selected randomly from the representatives of different ecosystem types and investigated mathematically.

Shannon information (product of logarithmic species number and evenness) obeys a hyperbolic saturation equation approaching a finite value on infinite area. This asymptotic limit defines the ecological potential of species diversity. Within a given plant-geographical region, it is determined by ecological site factors like climate and soil controlling interrelations between plants. Competition relationships and hence potentials of phytodiversity are altered by management significantly. The curve of evenness versus area size is hump-shaped. Maximum evenness is proportional to the ecological potential of species diversity. The area size where evenness attains its maximum can be interpreted as the minimum area of the respective forest type. The ecological potentials of plant species diversity modelled from information entropies correspond to vegetation patterns consisting of a limited number of plant species. These vegetation patterns are closely related to ecosystem processes like nutrient cycling, plant nutrition, evapotranspiration, microbial processes, or net-primary production. Revealing the relationships between vegetation patterns and ecosystem processes allows scaling functional information from local measurement scales up to regional scales.

It is suggested to explore genetic, proteomic, and species data in order to derive comprehensive ecological potentials of biodiversity on various levels from population to landscape. The expected results could improve the understanding of the relationship between biodiversity and ecosystem functioning as well as the sustainability of ecosystem management.  相似文献   

966.
We have constructed computational models of canine ventricular cells and tissues, ultimately combining detailed tissue architecture and heterogeneous transmural electrophysiology. The heterogeneity is introduced by modifying the Hund–Rudy canine cell model in order to reproduce experimentally reported electrophysiological properties of endocardial, midmyocardial (M) and epicardial cells. These models are validated against experimental data for individual ionic current and action potential characteristics, and their rate dependencies. 1D and 3D heterogeneous virtual tissues are constructed, with detailed tissue architecture (anisotropy and orthotropy, due to fibre orientation and sheet structure) of the left ventricular wall wedge extracted from a diffusion tensor imaging data set. The models are used to study the effects of tissue heterogeneity and class III drugs on transmural propagation and tissue vulnerability to re-entry.

We have determined relationships between the transmural dispersion of action potential duration (APD) and the vulnerable window in the 1D virtual ventricular wall, and demonstrated how changes in the transmural heterogeneity, and hence tissue vulnerability, can lead to generation of re-entry in the 3D ventricular wedge. Two class III drugs with opposite qualitative effects on transmural APD heterogeneity are considered: d-sotalol that increases transmural APD dispersion, and amiodarone that decreases it. Simulations with the 1D virtual ventricular wall show that under d-sotalol conditions the vulnerable window is substantially wider compared to amiodarone conditions, primarily in the epicardial region where unidirectional conduction block persists until the adjacent M cells are fully repolarised.

Further simulations with the 3D ventricular wedge have shown that ectopic stimulation of the epicardial region results in generation of sustained re-entry under d-sotalol conditions, but not under amiodarone conditions or in control. Again, APD increase in M cells was identified as the major contributor to tissue vulnerability—re-entry was initiated primarily due to ectopic excitation propagating around the unidirectional conduction block in the M cell region. This suggests an electrophysiological mechanism for the anti- and proarrhythmic effects of the class III drugs: the relative safety of amiodarone in comparison to d-sotalol can be explained by relatively low transmural APD dispersion, and hence, a narrow vulnerable window and low probability of re-entry in the tissue.  相似文献   

967.
Neuro-musculoskeletal modelling can provide insight into the aberrant muscle function during walking in those suffering cerebral palsy (CP). However, such modelling employs optimization to estimate muscle activation that may not account for disturbed motor control and muscle weakness in CP. This study evaluated different forms of neuro-musculoskeletal model personalization and optimization to estimate musculotendon forces during gait of nine children with CP (GMFCS I-II) and nine typically developing (TD) children. Data collection included 3D-kinematics, ground reaction forces, and electromyography (EMG) of eight lower limb muscles. Four different optimization methods estimated muscle activation and musculotendon forces of a scaled-generic musculoskeletal model for each child walking, i.e. (i) static optimization that minimized summed-excitation squared; (ii) static optimization with maximum isometric muscle forces scaled to body mass; (iii) an EMG-assisted approach using optimization to minimize summed-excitation squared while reducing tracking errors of experimental EMG-linear envelopes and joint moments; and (iv) EMG-assisted with musculotendon model parameters first personalized by calibration. Both static optimization approaches showed a relatively low model performance compared to EMG envelopes. EMG-assisted approaches performed much better, especially in CP, with only a minor mismatch in joint moments. Calibration did not affect model performance significantly, however it did affect musculotendon forces, especially in CP. A model more consistent with experimental measures is more likely to yield more physiologically representative results. Therefore, this study highlights the importance of calibrated EMG-assisted modelling when estimating musculotendon forces in TD children and even more so in children with CP.  相似文献   
968.
A series of optically active analogues of the H1-antihistamine ebastine, with chiral center(s) at the benzhydryl and/or phenylbutyl part of the molecule, have been synthesized. Their in vitro antihistaminic and antimuscarinic activities were investigated, along with a molecular modelling study. It was found that introduction of the benzhydryl chiral center yielded significant stereoselectivity for both antihistaminic and antimuscarinic activities. The steric preferences of the benzhydryl chiral center for antihistaminic and antimuscarinic actions were mirror images of each other. The (?)-isomer of 4-methylebastine ( 6d ) showed more than 10-fold higher in vitro antihistaminic potency than ebastine. Meanwhile the selectivity of 6d for histamine H1-receptors was also increased by more than 20 times in comparison with ebastine. The chirality at the phenylbutyl part of the molecule does not significantly alter the antihistaminic or antimuscarinic activity of the compounds although the (S)-isomers showed slightly but unanimously higher antihistaminic activity than the (R)-isomers. These results have been discussed with existing stereoselectivity data of antihistamines and an asymmetric pharmacophore model for H1-antagonists has been described. © 1994 Wiley-Liss, Inc.  相似文献   
969.
Spermatozoa exhibit considerable interspecific variability in size and shape. Our understanding of the adaptive significance of this diversity, however, remains limited. Determining how variation in sperm structure translates into variation in sperm performance will contribute to our understanding of the evolutionary diversification of sperm form. Here, using data from passerine birds, we test the hypothesis that longer sperm swim faster because they have more available energy. We found that sperm with longer midpieces have higher levels of intracellular adenosine triphosphate (ATP), but that greater energy reserves do not translate into faster-swimming sperm. Additionally, we found that interspecific variation in sperm ATP concentration is not associated with the level of sperm competition faced by males. Finally, using Bayesian methods, we compared the evolutionary trajectories of sperm morphology and ATP content, and show that both traits have undergone directional evolutionary change. However, in contrast to recent suggestions in other taxa, we show that changes in ATP are unlikely to have preceded changes in morphology in passerine sperm. These results suggest that variable selective pressures are likely to have driven the evolution of sperm traits in different taxa, and highlight fundamental biological differences between taxa with internal and external fertilization, as well as those with and without sperm storage.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号