首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3464篇
  免费   400篇
  国内免费   38篇
  3902篇
  2024年   10篇
  2023年   67篇
  2022年   43篇
  2021年   79篇
  2020年   145篇
  2019年   192篇
  2018年   148篇
  2017年   196篇
  2016年   152篇
  2015年   177篇
  2014年   228篇
  2013年   371篇
  2012年   133篇
  2011年   147篇
  2010年   123篇
  2009年   181篇
  2008年   172篇
  2007年   196篇
  2006年   171篇
  2005年   117篇
  2004年   113篇
  2003年   102篇
  2002年   98篇
  2001年   65篇
  2000年   44篇
  1999年   59篇
  1998年   54篇
  1997年   57篇
  1996年   41篇
  1995年   40篇
  1994年   25篇
  1993年   25篇
  1992年   30篇
  1991年   14篇
  1990年   14篇
  1989年   10篇
  1988年   8篇
  1987年   10篇
  1986年   10篇
  1985年   12篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   1篇
  1979年   5篇
排序方式: 共有3902条查询结果,搜索用时 15 毫秒
111.
* Simple models of light interception are useful to identify the key structural parameters involved in light capture. We developed such models for isolated trees and tested them with virtual experiments. Light interception was decomposed into the projection of the crown envelope and the crown porosity. The latter was related to tree structure parameters. * Virtual experiments were conducted with three-dimensional (3-D) digitized apple trees grown in Lebanon and Switzerland, with different cultivars and training. The digitized trees allowed actual values of canopy structure (total leaf area, crown volume, foliage inclination angle, variance of leaf area density) and light interception properties (projected leaf area, silhouette to total area ratio, porosity, dispersion parameters) to be computed, and relationships between structure and interception variables to be derived. * The projected envelope area was related to crown volume with a power function of exponent 2/3. Crown porosity was a negative exponential function of mean optical density, that is, the ratio between total leaf area and the projected envelope area. The leaf dispersion parameter was a negative linear function of the relative variance of leaf area density in the crown volume. * The resulting models were expressed as two single equations. After calibration, model outputs were very close to values computed from the 3-D digitized databases.  相似文献   
112.
113.
Populations occurring in areas of overlap between the current and future distribution of a species are particularly important because they can represent “refugia from climate change”. We coupled ecological and range‐wide genetic variation data to detect such areas and to evaluate the impacts of habitat suitability changes on the genetic diversity of the transitional Mediterranean‐temperate tree Fraxinus angustifolia. We sampled and genotyped 38 natural populations comprising 1006 individuals from across Europe. We found the highest genetic diversity in western and northern Mediterranean populations, as well as a significant west to east decline in genetic diversity. Areas of potential refugia that correspond to approximately 70% of the suitable habitat may support the persistence of more than 90% of the total number of alleles in the future. Moreover, based on correlations between Bayesian genetic assignment and climate, climate change may favour the westward spread of the Black Sea gene pool in the long term. Overall, our results suggest that the northerly core areas of the current distribution contain the most important part of the genetic variation for this species and may serve as in situ macrorefugia from ongoing climate change. However, rear‐edge populations of the southern Mediterranean may be exposed to a potential loss of unique genetic diversity owing to habitat suitability changes unless populations can persist in microrefugia that have facilitated such persistence in the past.  相似文献   
114.
The last Pleistocene deglaciation shaped temperate and boreal communities in North America. Rapid northward expansion into high latitudes created distinctive spatial genetic patterns within species that include closely related groups of populations that are now widely spread across latitudes, while longitudinally adjacent populations, especially those near the southern periphery, often are distinctive due to long‐term disjunction. Across a spatial expanse that includes both recently colonized and long‐occupied regions, we analysed molecular variation in zapodid rodents to explore how past climate shifts influenced diversification in this group. By combining molecular analyses with species distribution modelling and tests of ecological interchangeability, we show that the lineage including the Preble's meadow jumping mouse (Zapus hudsonius preblei), a US federally listed taxon of conservation concern, is not restricted to the southern Rocky Mountains. Rather, populations along the Front Range are part of a single lineage that is ecologically indistinct and extends to the far north. Of the 21 lineages identified, this Northern lineage has the largest geographical range and low measures of intralineage genetic differentiation, consistent with recent northward expansion. Comprehensive sampling combined with coalescent‐based analyses and niche modelling leads to a radically different view of geographical structure within jumping mice and indicates the need to re‐evaluate their taxonomy and management. This analysis highlights a premise in conservation biology that biogeographical history should play a central role in establishing conservation priorities.  相似文献   
115.
Tree root systems, which play a major role in below-ground carbon (C) dynamics, are one of the key research areas for estimating long-term C cycling in forest ecosystems. In addition to regulating major C fluxes in the present conditions, tree root systems potentially hold numerous controls over forest responses to a changing environment. The predominant contribution of tree root systems to below-ground C dynamics has been given little emphasis in forest models. We developed the TRAP model, i.e. Tree Root Allocation of Photosynthates, to predict the partitioning of photosynthates between the fine and coarse root systems of trees among series of soil layers. TRAP simulates root system responses to soil stress factors affecting root growth. Validation data were obtained from two Belgian experimental forests, one mostly composed of beech (Fagus sylvatica L.) and the other of Scots pine (Pinus sylvestris L.). TRAP accurately predicted (R = 0.88) night-time CO2 fluxes from the beech forest for a 3-year period. Total fine root biomass of beech was predicted within 6% of measured values, and simulation of fine root distribution among soil layers was accurate. Our simulations suggest that increased soil resistance to root penetration due to reduced soil water content during summer droughts is the major mechanism affecting the distribution of root growth among soil layers of temperate Belgian forests. The simulated annual rate of C input to soil litter due to the fine root turnover of the Scots pine was 207 g C m–2 yr–1. The TRAP model predicts that fine root turnover is the single most important source of C to the temperate forest soils of Belgium.  相似文献   
116.
Laboratory experiments were conducted to study nitrogen (N) regeneration by the heterotrophic marine dinoflagellate Oxyrrhis marina when ingesting phytoplankton prey of two different species and of two alternative carbon:nitrogen (C:N) ratios. Experiments were conducted in the presence of L-methionine sulfoximine (MSX) which acts as a glutamine synthetase inhibitor. Utilisation by phytoplankton of N regenerated by protozoans and other organisms drives secondary production in marine food webs. However, the rapid utilisation of this N by phytoplankton has previously hampered accurate assessment of the efficiency of protozoan N regeneration. This phenomenon is particularly problematic when the phytoplankton are nutrient stressed and most likely to rapidly utilise N. The use of MSX prevented significant utilisation by phytoplankton of protozoan regenerated N. Hence, by removing the normal pathway of N cycling, we were able to determine the N regeneration efficiency (NRE) of the protozoan. The results suggested that predator NRE could be explained in terms of the relative CN stoichiometry of prey and predator. Using a mathematical model we demonstrated that changing the method used to simulate the NRE of the protozoan trophic level has the potential to markedly modify the predicted dynamics of the simulated microbial food web.  相似文献   
117.
AIMS: Understanding the origin of high thermostability exhibited by the alpha-amylase produced by a natural strain of Bacillus licheniformis. METHODS AND RESULTS: The MSH320 alpha-amylase gene has been cloned from a native strain of B. licheniformis isolated from flour mill wastewaters in Kashan, central Iran, and its nucleotide sequence was determined (GenBank Accession Number AF438149). Whereas previously cloned B. licheniformisalpha-amylase (BLA) genes are nearly identical, the MSH320 gene coding sequence presents only 93% identity with the reference 'wild-type' BLA gene, most of the nucleotide changes leading to silent mutations. Amino acid substitutions occurred at 19 of the 483 residues of the matured protein, distributed all along the protein sequence. Nevertheless, the natural BLA variant presents thermoinactivation kinetics similar to that of the reference BLA. Protein modelling and structural predictions at the substitution sites suggest that half of the mutations may have a significant stabilizing or destabilizing effect on the protein structure. Compensatory mutations thus occurred in the natural variant in order to maintain thermostability to the level of the reference enzyme. CONCLUSIONS: The exceptional high thermostability of BLA, although produced by a nonthermophilic organism, is not fortuitous but subject to a selective pressure still at work in natural environments. SIGNIFICANCE AND IMPACT OF THE STUDY: BLA thermal performances are not naturally maximized and can be substantially improved by protein engineering.  相似文献   
118.
Worldwide, urbanization leads to tremendous anthropogenic environmental alterations, causing strong selection pressures on populations of animals and plants. Although a key feature of urban areas is their higher temperature (“urban heat islands”), adaptive thermal evolution in organisms inhabiting urban areas has rarely been studied. We tested for evolution of a higher heat tolerance (CTMAX) in urban populations of the water flea Daphnia magna, a keystone grazer in freshwater ecosystems, by carrying out a common garden experiment at two temperatures (20°C and 24°C) with genotypes of 13 natural populations ordered along a well‐defined urbanization gradient. We also assessed body size and haemoglobin concentration to identify underlying physiological drivers of responses in CTMAX. We found a higher CTMAX in animals isolated from urban compared to rural habitats and in animals reared at higher temperatures. We also observed substantial genetic variation in thermal tolerance within populations. Overall, smaller animals were more heat tolerant. While urban animals mature at smaller size, the effect of urbanization on thermal tolerance is only in part caused by reductions in body size. Although urban Daphnia contained higher concentrations of haemoglobin, this did not contribute to their higher CTMAX. Our results provide evidence of adaptive thermal evolution to urbanization in the water flea Daphnia. In addition, our results show both evolutionary potential and adaptive plasticity in rural as well as urban Daphnia populations, facilitating responses to warming. Given the important ecological role of Daphnia in ponds and lakes, these adaptive responses likely impact food web dynamics, top‐down control of algae, water quality, and the socio‐economic value of urban ponds.  相似文献   
119.
Two pathogenic microorganisms Escherichia coli O157:H7 and Staphylococcus aureus, suspended in peptone solution (0.1% w/v) were treated with 12, 14, 16 and 20 kV/cm electric field strengths with different pulse numbers up to 60 pulses. Pulsed electric field (PEF) treatment at 20 kV/cm with 60 pulses provided nearly 2 log reduction in viable cell counts of E. coli O157:H7 and S. aureus. S. aureus cells were slightly more resistant than E.coli O157:H7 cells. The results related to the effect of initial cell concentration of E. coli O157:H7 on the PEF inactivation showed that more inactivation was obtained by decreasing initial cell concentration. Any possible injury by PEF was also investigated after applying 20 kV/cm electric field to the microorganisms. As a result, it was determined that there was 35.92 to 43.36% injury in E. coli O157:H7 cells, and 17.26 to 30.86% injury in S. aureus cells depending on pulse number. The inactivation results were also described by a kinetic model.  相似文献   
120.
We documented brood parasitism by the poorly studied Large Hawk‐Cuckoo on a previously unknown host species, the Chinese Babax. Furthermore, we describe a new egg colour for the Large Hawk‐Cuckoo. The parasitism rate of Chinese Babax nests over 4 years was 6.9% (11 of 159 nests), with significant temporal variation. The Large Hawk‐Cuckoo laid immaculate white eggs that appeared non‐mimetic to the blue Babax eggs, an impression that was confirmed by avian visual modelling. Nevertheless, most Cuckoo eggs were accepted by the host, suggesting that this host–parasite system may be evolutionarily recent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号