首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   5篇
  国内免费   26篇
  679篇
  2023年   2篇
  2020年   4篇
  2019年   7篇
  2018年   3篇
  2016年   4篇
  2015年   9篇
  2014年   45篇
  2013年   69篇
  2012年   52篇
  2011年   95篇
  2010年   84篇
  2009年   21篇
  2008年   16篇
  2007年   29篇
  2006年   24篇
  2005年   28篇
  2004年   21篇
  2003年   18篇
  2002年   13篇
  2001年   4篇
  2000年   2篇
  1999年   9篇
  1997年   11篇
  1996年   10篇
  1995年   14篇
  1994年   23篇
  1993年   7篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1988年   2篇
  1987年   3篇
  1985年   2篇
  1984年   3篇
  1983年   9篇
  1982年   4篇
  1980年   5篇
  1979年   6篇
  1978年   1篇
  1977年   3篇
排序方式: 共有679条查询结果,搜索用时 10 毫秒
91.
经磷脂酶A2 去脂的肌质网Ca2 + - ATPase 重组于不同比例的二油酰磷脂酰胆碱(Dioleoylphophatidylcholine,DOPC) 和二油酰磷脂酰乙醇胺(Dioleoylphophatidylethanolamine,DOPE) 形成脂酶体,研究了不同磷脂环境中Ca2 + - ATPase 的ATP 水解和Ca2 + 转运活力。结果表明,DOPC 和DOPE 分别有利于ATP 水解和Ca2 + 的转运,DOPE 可以增强Ca2 + - ATPase 的ATP水解和Ca2 + 转运之间的偶联效率。利用内源荧光、荧光淬灭及Forster 能量转移原理测定Ca2 + -ATPase 相应的构象变化, 发现随着DOPE/ DOPC 比例的改变使Ca2 + - ATPase 构象发生相应的变化。  相似文献   
92.
Parameterization of the phi and omega torsion angles in pyranosidic saccharides was performed based on density functional theory calculations. The modified CHARMM force field, which is referred to as PARM22/SU01, was tested on a glucosyl trisaccharide. A molecular dynamics simulation of the oligosaccharide with explicit water as solvent was performed to investigate the conformational flexibility. Protonz.sbnd;proton distances and heteronuclear spin-spin coupling constants were calculated from the trajectories and showed good agreement to those previously determined by NMR spectroscopy.  相似文献   
93.
A tRNAPhe derivative carrying ethidium at position 37 in the anticodon loop has been used to study the effect of spermine on conformational transitions of the tRNA. As previously reported (Ehrenberg, M., Rigler, R. and Wintermeyer, W. (1979) Biochemistry 18, 4588–4599) in the tRNA derivative the ethidium is present in three states (T1–T3) characterized by different fluorescence decay rates. T-jump experiments show two transitions between the states, a fast one (relaxation time 10–100 ms) between T1 and T2, and a slow one (100–1000 ms) between T2 and T3. In the presence of spermine the fast transition shows a negative temperature coefficient indicating the existence of a preequilibrium with a negative reaction enthalpy. Spermine shifts the distribution of states towards T3, as does Mg2+, but the final ratio [T2][T1] obtained with spermine is higher than with Mg2+, which we tentatively interpret to mean that spermine stabilizes one particular conformation of the anticodon loop.  相似文献   
94.
Synthesis and stereochemical characterization of enantiomerically pure nucleoside-3′-phosphorothioate esters and salts are reported. Vicinal carbon–phosphorus couplings reflect different predominance of the ? conformation in the isomeric (Rp and Sp) esters, while for the salts the ?t conformation prevails in both stereoisomers. The influence of solvent and temperature on the conformational preferences is also described.  相似文献   
95.
General anesthetics exert many of their CNS actions by binding to and modulating membrane-embedded pentameric ligand-gated ion channels (pLGICs). The structural mechanisms underlying how anesthetics modulate pLGIC function remain largely unknown. GLIC, a prokaryotic pLGIC homologue, is inhibited by general anesthetics, suggesting anesthetics stabilize a closed channel state, but in anesthetic-bound GLIC crystal structures the channel appears open. Here, using functional GLIC channels expressed in oocytes, we examined whether propofol induces structural rearrangements in the GLIC transmembrane domain (TMD). Residues in the GLIC TMD that frame intrasubunit and intersubunit water-accessible cavities were individually mutated to cysteine. We measured and compared the rates of modification of the introduced cysteines by sulfhydryl-reactive reagents in the absence and presence of propofol. Propofol slowed the rate of modification of L240C (intersubunit) and increased the rate of modification of T254C (intrasubunit), indicating that propofol binding induces structural rearrangements in these cavities that alter the local environment near these residues. Propofol acceleration of T254C modification suggests that in the resting state propofol does not bind in the TMD intrasubunit cavity as observed in the crystal structure of GLIC with bound propofol (Nury, H., Van Renterghem, C., Weng, Y., Tran, A., Baaden, M., Dufresne, V., Changeux, J. P., Sonner, J. M., Delarue, M., and Corringer, P. J. (2011) Nature 469, 428–431). In silico docking using a GLIC closed channel homology model suggests propofol binds to intersubunit sites in the TMD in the resting state. Propofol-induced motions in the intersubunit cavity were distinct from motions associated with channel activation, indicating propofol stabilizes a novel closed state.  相似文献   
96.
The traditional culture-dependent plate counting and culture-independent small-subunit-ribosomal RNA gene-targeted molecular techniques, Single-Strand Conformation Polymorphism (SSCP) and ter-minal Restriction Fragment Length Polymorphism (tRFLP) combined with 16S rDNA clone library were adopted to investigate the impacts of secretion from Camptotheca acuminata (abbreviated to Ca) roots on the quantities and structure of eukaryotic microbes and bacteria in the rhizosphere, and the possi-bility that Ca controls exotic invasive plant Eupatorium adenophorum (Ea). The counting results indi-cated that the number of bacteria increased in turn in rhizospheres of Ea, Ca-Ea mixed culture and Ca, while that of eukaryotic microbes decreased. PCR-SSCP profiles showed eukaryotic microbial bands (corresponding to biodiversity) in rhizosphere of Ea were more complex than those of Ca and CE. Meristolohmannia sp., Termitomyces sp. and Rhodophyllus sp. were the dominant populations in the rhizosphere of Ca. Bacterial terminal restriction fragments (TRFs) profiles showed no difference among three kinds of rhizospheres, and the sequences of the 16S rDNA clone library from Ca rhizospheres were distributed in 10 known phyla, in which phylum Proteobacteria were the absolute dominant group and accounted for 24.71% of the cloned sequences (δ-Proteobacteria accounted for up to 17.65%), and phyla Acidobacteria and Bacteroidetes accounted for 16.47% and 10.59% of the cloned sequences, respectively. In addition, high performance liquid chromatography detected a trace amount of camp-tothecin and hydroxycamptothecin in the rhizospheric soil of Ca and CE, but examined neither camp-tothecin nor hydroxycamptothecin in rhizospheric soil of Ea. Therefore, invasion and diffusion of Ea evidently depended on distinguishing the eukaryotic community structure, but not on that of the bac-terial pattern. Ca was able to alter the eukaryotic community structure of invasive Ea by secreting camptothecin and hydroxycamptothecin into rhizospheres, and may benefit the control of overspread of Ea. This study provided theoretical evidence for rhizospheric microbial aspects on substituting Ca for Ea.  相似文献   
97.
Structural analysis of oxazolomycin and simpler fragments containing a common 3-hydroxy-2,2-dimethylpropanamide moiety has indicated that a U-shaped conformation is preferred, in some cases stabilised by hydrogen bonding between the N–H and O–H residues, as shown by a combination of molecular modelling, NMR spectroscopic and single crystal X-ray analysis. A direct synthesis of this unit has been established via the opening of β-lactones by a range of amines, and their antibacterial activity been shown to vary with the hydrophobic character of the substituents.  相似文献   
98.
The effect of different cations on the conformational and morphological properties of the capsular polysaccharide produced by Neisseria meningitidis group A was investigated. Circular dichroism studies showed that the presence of Na+, or Ca2+ ions induced different local conformations of the polysaccharide chain through interactions with the phosphodiester group bridging the saccharide residues in the polymer chain. Atomic force microscopy experiments confirmed that the morphology of the polysaccharide chains was different depending on the nature of the counterion. Ammonium ions were associated with the presence of single polymer chains in an elongated conformation, whereas sodium ions favored the folding of the chains into a globular conformation. The addition of calcium ions produced the aggregation of a limited number of globular polysaccharide chains to form a ‘toroidal-like’ structure.  相似文献   
99.
Previously we identified threonine-1172 (T1172) in the cytoplasmic domain of the cell adhesion molecule L1 as phosphorylated in pancreatic cancer cells. Although both CKII- and PKC-blockade suppressed this modification, only CKII was capable of phosphorylating T1172 of a recombinant L1 cytoplasmic domain, suggesting the requirement for additional events to facilitate availability of T1172 to PKC. In this study, we demonstrate that the region around T1172 exists in distinct conformations based on both T1172 phosphorylation and the integrity of surrounding residues. We further demonstrate the role of membrane-proximal and membrane-distal residues in regulating cytoplasmic domain conformation, and that modification of 3 of the 4 tyrosines in the L1 cytoplasmic domain promote conformational changes that facilitate other events. In particular, phenylalanine-substitution of tyrosine-1151 or tyrosine-1229 promote opening up of the cytoplasmic domain in a manner that facilitates phosphorylation of the other 3 tyrosines, as well as phosphorylation of T1172 by PKCα. Importantly, we show that phosphorylation of serine-1181 is required for T1172 phosphorylation by CKII. These data define a specific role for secondary structure in regulating the availability of T1172 that facilitates phosphorylation by PKC.  相似文献   
100.
Cytoplasmic dynein is a 1.2-MDa multisubunit motor protein complex that, together with its activator dynactin, is responsible for the majority of minus end microtubule-based motility. Dynactin targets dynein to specific cellular locations, links dynein to cargo, and increases dynein processivity. These two macromolecular complexes are connected by a direct interaction between dynactin's largest subunit, p150(Glued), and dynein intermediate chain (IC) subunit. Here, we demonstrate using NMR spectroscopy and isothermal titration calorimetry that the binding footprint of p150(Glued) on IC involves two noncontiguous recognition regions, and both are required for full binding affinity. In apo-IC, the helical structure of region 1, the nascent helix of region 2, and the disorder in the rest of the chain are determined from coupling constants, amide-amide sequential NOEs, secondary chemical shifts, and various dynamics measurements. When bound to p150(Glued), different patterns of spectral exchange broadening suggest that region 1 forms a coiled-coil and region 2 a packed stable helix, with the intervening residues remaining disordered. In the 150-kDa complex of p150(Glued), IC, and two light chains, the noninterface segments remain disordered. The multiregion IC binding interface, the partial disorder of region 2 and its potential for post-translational modification, and the modulation of the length of the longer linker by alternative splicing may provide a basis for elegant and multifaceted regulation of binding between IC and p150(Glued). The long disordered linker between the p150(Glued) binding segments and the dynein light chain consensus sequences could also provide an attractive recognition platform for diverse cargoes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号