全文获取类型
收费全文 | 648篇 |
免费 | 5篇 |
国内免费 | 26篇 |
专业分类
679篇 |
出版年
2023年 | 2篇 |
2020年 | 4篇 |
2019年 | 7篇 |
2018年 | 3篇 |
2016年 | 4篇 |
2015年 | 9篇 |
2014年 | 45篇 |
2013年 | 69篇 |
2012年 | 52篇 |
2011年 | 95篇 |
2010年 | 84篇 |
2009年 | 21篇 |
2008年 | 16篇 |
2007年 | 29篇 |
2006年 | 24篇 |
2005年 | 28篇 |
2004年 | 21篇 |
2003年 | 18篇 |
2002年 | 13篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 9篇 |
1997年 | 11篇 |
1996年 | 10篇 |
1995年 | 14篇 |
1994年 | 23篇 |
1993年 | 7篇 |
1992年 | 7篇 |
1991年 | 4篇 |
1990年 | 6篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1983年 | 9篇 |
1982年 | 4篇 |
1980年 | 5篇 |
1979年 | 6篇 |
1978年 | 1篇 |
1977年 | 3篇 |
排序方式: 共有679条查询结果,搜索用时 15 毫秒
71.
72.
Lymphocyte homing is regulated by the dynamic interaction between integrins and their ligands. Integrin α4β7 mediates both rolling and firm adhesion of lymphocytes by modulating its affinity to the ligand, mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Although previous studies have revealed some mechanisms of α4β7-MAdCAM-1 binding, little is known about the different molecular bases of the low- and high-affinity α4β7-MAdCAM-1 interactions, which mediate rolling and firm adhesion of lymphocytes, respectively. Here, we found that two loops in immunoglobulin domains 1 and 2 (D1 and D2) of MAdCAM-1 played different roles in MAdCAM-1 binding to low-affinity (inactive) and high-affinity (activated) α4β7. The Asp-42 in the CC' loop of D1 was indispensable for MAdCAM-1 binding to both low-affinity and high-affinity α4β7. The other CC' loop residues except for Arg-39 and Ser-44 were essential for MAdCAM-1 binding to both inactive α4β7 and α4β7 activated by SDF-1α or talin, but not required for MAdCAM-1 binding to Mn2+-activated α4β7. Single amino acid substitution of the DE loop residues mildly decreased MAdCAM-1 binding to both inactive and activated α4β7. Notably, removal of the DE loop greatly impaired MAdCAM-1 binding to inactive and SDF-1α- or talin-activated α4β7, but only decreased 60% of MAdCAM-1 binding to Mn2+-activated α4β7. Moreover, DE loop residues were important for stabilizing the low-affinity α4β7-MAdCAM-1 interaction. Thus, our findings demonstrate the distinct roles of the CC' and DE loops in the recognition of MAdCAM-1 by low- and high-affinity α4β7 and suggest that the inactive α4β7 and α4β7 activated by different stimuli have distinct conformations with different structural requirements for MAdCAM-1 binding. 相似文献
73.
Cytoplasmic dynein is a 1.2-MDa multisubunit motor protein complex that, together with its activator dynactin, is responsible for the majority of minus end microtubule-based motility. Dynactin targets dynein to specific cellular locations, links dynein to cargo, and increases dynein processivity. These two macromolecular complexes are connected by a direct interaction between dynactin's largest subunit, p150(Glued), and dynein intermediate chain (IC) subunit. Here, we demonstrate using NMR spectroscopy and isothermal titration calorimetry that the binding footprint of p150(Glued) on IC involves two noncontiguous recognition regions, and both are required for full binding affinity. In apo-IC, the helical structure of region 1, the nascent helix of region 2, and the disorder in the rest of the chain are determined from coupling constants, amide-amide sequential NOEs, secondary chemical shifts, and various dynamics measurements. When bound to p150(Glued), different patterns of spectral exchange broadening suggest that region 1 forms a coiled-coil and region 2 a packed stable helix, with the intervening residues remaining disordered. In the 150-kDa complex of p150(Glued), IC, and two light chains, the noninterface segments remain disordered. The multiregion IC binding interface, the partial disorder of region 2 and its potential for post-translational modification, and the modulation of the length of the longer linker by alternative splicing may provide a basis for elegant and multifaceted regulation of binding between IC and p150(Glued). The long disordered linker between the p150(Glued) binding segments and the dynein light chain consensus sequences could also provide an attractive recognition platform for diverse cargoes. 相似文献
74.
Carol L. Ladner Min Chen David P. Smith Geoffrey W. Platt Sheena E. Radford Ralf Langen 《The Journal of biological chemistry》2010,285(22):17137-17147
β2-microglobulin (β2m) is a 99-residue protein with an immunoglobulin fold that forms β-sheet-rich amyloid fibrils in dialysis-related amyloidosis. Here the environment and accessibility of side chains within amyloid fibrils formed in vitro from β2m with a long straight morphology are probed by site-directed spin labeling and accessibility to modification with N-ethyl maleimide using 19 site-specific cysteine variants. Continuous wave electron paramagnetic resonance spectroscopy of these fibrils reveals a core predominantly organized in a parallel, in-register arrangement, by contrast with other β2m aggregates. A continuous array of parallel, in-register β-strands involving most of the polypeptide sequence is inconsistent with the cryoelectron microscopy structure, which reveals an architecture based on subunit repeats. To reconcile these data, the number of spins in close proximity required to give rise to spin exchange was determined. Systematic studies of a model protein system indicated that juxtaposition of four spin labels is sufficient to generate exchange narrowing. Combined with information about side-chain mobility and accessibility, we propose that the amyloid fibrils of β2m consist of about six β2m monomers organized in stacks with a parallel, in-register array. The results suggest an organization more complex than the accordion-like β-sandwich structure commonly proposed for amyloid fibrils. 相似文献
75.
The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K(+)·P(i) with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na(+), after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na(+) demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway. 相似文献
76.
This work evaluated the anionic polysaccharides to improve the functional properties and antioxidant activities, and compared the effects on covalently-linked the soy protein isolate (SPI)- (–)-epigallocatechin-3-gallat (EGCG) binary complexes. The increasing molecular weight via covalent insertion of (–)-epigallocatechin-3-gallat (EGCG) into the soy protein isolate (SPI) was verified by SDS-PAGE. The addition of polysaccharides had no obvious effects on the molecular weight, indicating noncovalent insertion by adsorption. Fourier transform infrared spectroscopy (FT-IR) analysis suggested that SPI-EGCG complexes mixed with polysaccharides changed the secondary structures of SPI with a decrease in α-helix and an increase in β-turn. The emulsions exhibited better stability index (ESI) by adding polysaccharides than the binary complexes emulsion, with decreased particle sizes and increased absolute ζ-potential values, while the value of ESI for the pectin mixed increased more. The 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) scavenging capacity of SPI-EGCG complexes with the addition of polysaccharides were both greater than 70 %. These findings indicated that anionic polysaccharides could be potentially used as a natural and safe alternative for regulating covalently-linked SPI-EGCG emulsion stability and improving emulsion oxidation resistance. 相似文献
77.
The calcium binding characteristics of antibiotic X-537A (lasalocid-A) in a lipophilic solvent, acetonitrile (CH3CN), have been studied using circular dichroism (CD) spectroscopy. The analysis of the data indicated that in this medium polar solvent, X-537A forms predominantly the charged complexes of stoichiometries 2:1 and 1:1, the relative amounts of the two being dependent on [Ca2+]. The conformations of the complexes, arrived at on the basis of the data, seem to indicate a rigid part encompassing Ca2+, liganded to 3 oxygens of the molecule, viz., the carbonyl, the substituted tetrahydrofuran ring and the substituted pyran ring oxygens (apart from, possibly, the liganding provided by nitrogen atoms of the solvent molecules), and a flexible part consisting of the salicylic acid group of the molecule. 相似文献
78.
Zsuzsa S. Kocsis Kata Sarlós Gábor M. Harami Máté Martina Mihály Kovács 《The Journal of biological chemistry》2014,289(9):5938-5949
The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases. 相似文献
79.
Harjeet S. Soor Solomon D. Appavoo Andrei K. Yudin 《Bioorganic & medicinal chemistry》2018,26(10):2774-2779
The potential of macrocyclic peptides as therapeutics has garnered much attention over the last several years. Unlike their linear counterparts, macrocycles have higher resistance to enzymatic degradation and often display improved bioavailability. However, macrocycles are typically not lipophilic enough for cellular membrane penetration, which prevents them from interacting with intracellular targets. Methods to increase cellular permeability have involved the incorporation of bicyclic scaffolds, d-amino acids and N-methylation of amides. These modifications exert their effect through conformational control of macrocycles and have been well studied in the literature. In contrast, the structural consequences of heterocycle incorporation into macrocyclic rings has not been as exhaustively investigated. In this mini-review we discuss key examples in which heterocycles influence the conformational stability and other properties of macrocycles. 相似文献
80.
The importance of unsaturated, and especially polyunsaturated phosphatidylcholine molecules for the functional properties of biological membranes is widely accepted. Here, the effects of unsaturation on the nanosecond-scale structural and dynamic properties of the phosphatidylcholine bilayer were elucidated by performance of multinanosecond molecular dynamics simulations of all-atom bilayer models. Bilayers of dipalmitoylphosphatidylcholine and its mono-, di-, and tetraunsaturated counterparts were simulated, containing, respectively, oleoyl, linoleoyl, or arachidonoyl chains in the sn-2 position. Analysis of the simulations focused on comparison of the structural properties, especially the ordering of the chains in the membranes. Although the results suggest some problems in the CHARMM force field of the lipids when applied in a constant pressure ensemble, the features appearing in the ordering of the unsaturated chains are consistent with the behaviour known from 2H NMR experiments. The rigidity of the double bonds is compensated by the flexibility of skew state single bonds juxtaposed with double bonds. The presence of double bonds in the sn-2 chains considerably reduces the order parameters of the CH bonds. Moreover, the double bond region of tetraunsaturated chains is shown to span all the way from the bilayer centre to the head group region. 相似文献