首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1393篇
  免费   42篇
  国内免费   18篇
  1453篇
  2023年   8篇
  2022年   15篇
  2021年   22篇
  2020年   13篇
  2019年   34篇
  2018年   32篇
  2017年   14篇
  2016年   21篇
  2015年   77篇
  2014年   138篇
  2013年   123篇
  2012年   132篇
  2011年   133篇
  2010年   80篇
  2009年   71篇
  2008年   41篇
  2007年   67篇
  2006年   50篇
  2005年   51篇
  2004年   30篇
  2003年   47篇
  2002年   30篇
  2001年   17篇
  2000年   14篇
  1999年   16篇
  1998年   18篇
  1997年   13篇
  1996年   14篇
  1995年   13篇
  1994年   17篇
  1993年   10篇
  1992年   13篇
  1991年   8篇
  1990年   8篇
  1989年   4篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1985年   7篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   5篇
  1973年   6篇
  1972年   1篇
  1970年   2篇
排序方式: 共有1453条查询结果,搜索用时 15 毫秒
91.
天花粉蛋白与FMP复合物的晶体结构   总被引:5,自引:1,他引:5  
用浸泡法得到了天花粉蛋白(TCS)与FMP复合物的晶体,在SIMENNSX-200B面探测器系统上收集了一套2.0分辨率的X射线衍射数据。用同晶差值傅立叶法解析了复合物的结构,经X—PLOR程序修正得到了TCS—FMP复合物的分子结构并找出了197个水分子,最后的R因子为0.172,键长和键角的RMS偏差分别为0.015和2.922度。TCS—FMP复合物中,FMP与天花粉蛋白分子有较好的结合,其结合位置正处于根据三维结构和突变体信息推测的N一糖苷酶活性口袋之中。它的类嘌呤环夹在Y70和Y111两个侧链环之间,与Y70环近乎平行,其N7和N6分别与TCS分子的G1094羰基氧和I71的N成氢键,N3靠近R163的侧链,其磷酸根则伸向活性口袋的底部,与E189、E160和R163等残基作用。  相似文献   
92.
Population dynamics of Heliothis virescens (F.) and Heliothis zea (Boddie ) (Lepidoptera: Noctuidae) eggs and larvae were studied for two years in a small plot of cotton, Gossypium hirsutum (L.). Due to morphological and ecological similarities, the pooled Heliothis population was considered for most of the analyses. Two generations of Heliothis eggs and larvae were completed during each year. Stage recruitment was estimated for the eggs and larval instars 2–6, and recruitment variances were estimated by a Monte Carlo method. A modified form of the Weibull distribution was developed and used as a model to characterize survivorship curves for each of the four Heliothis generations. A Type I survivorship curve (mortality rate increasing with age) was inferred for both Generation 1 (early season) data sets, whereas a Type II survivorship curve (mortality rate constant and thus independent of age) was inferred for both Generation 2 (late season) data sets. The shapes of the survivorship curves for the individual H. virescens and H. zea populations were inferred to be the same as those for the pooled populations. Analysis of the contributions of various factors to Heliothis stage-specific mortality indicated that natural enemies (predators and parasites) and the availability of food for larvae were responsible for between-generation differences in survivorship patterns.  相似文献   
93.
A study is presented on the interaction of carvedilol with mitochondria isolated from several rat organs. It is shown that carvedilol causes a moderate uncoupling effect under non phosphorylating succinate supported respiration of intact mitochondria, as well as a marked inhibition of coupled respiration with NAD-dependent substrates. The inhibitory effect was also found in the bovine heart purified Complex I as well as in experiments with mitochondrial particles, where the individual redox segments of the respiratory chain were analysed. It is also shown that carvedilol, though exhibiting an intrinsic scavenger activity, caused reactive oxygen species to be produced as a consequence of its inhibitory effect on the steady-state respiration. Under these conditions the pro-oxidant activity of carvedilol appears to prevail over its scavenging activity, and a net generation of ROS is promoted.  相似文献   
94.
A marked stimulation of complex II enzymatic activity was detected in cybrids bearing a homoplasmic MTCYB microdeletion causing disruption of both the activity and the assembly of complex III, but not in cybrids harbouring another MTCYB mutation affecting only the complex III activity. Moreover, complex II stimulation was associated with SDHA subunit tyrosine phosphorylation. Despite the lack of detectable hydrogen peroxide production, up-regulation of the levels of mitochondrial antioxidant defenses revealed a significant redox unbalance. This effect was also supported by the finding that treatment with N-acetylcysteine dampened the complex II stimulation, SDHA subunit tyrosine phosphorylation, and levels of antioxidant enzymes. In the absence of complex III, the cellular amount of succinate, but not fumarate, was markedly increased, indicating that enhanced activity of complex II is hampered due to the blockage of respiratory electron flow. Thus, we propose that complex II phosphorylation and stimulation of its activity represent a molecular mechanism triggered by perturbation of mitochondrial redox homeostasis due to severe dysfunction of respiratory complexes. Depending on the site and nature of the damage, complex II stimulation can either bypass the energetic deficit as an efficient compensatory mechanism, or be ineffectual, leaving cells to rely on glycolysis for survival.  相似文献   
95.

Background

Mitochondrial biogenesis is crucial for myogenic differentiation and regeneration of skeletal muscle tissue and is tightly controlled by the peroxisome proliferator-activated receptor-γ co-activator 1 (PGC-1) signaling network. In the present study, we hypothesized that inactivation of glycogen synthase kinase (GSK)-3β, previously suggested to interfere with PGC-1 in non-muscle cells, potentiates PGC-1 signaling and the development of mitochondrial biogenesis during myogenesis, ultimately resulting in an enhanced myotube oxidative capacity.

Methods

GSK-3β was inactivated genetically or pharmacologically during myogenic differentiation of C2C12 muscle cells. In addition, m. gastrocnemius tissue was collected from wild-type and muscle-specific GSK-3β knock-out (KO) mice at different time-points during the reloading/regeneration phase following a 14-day hind-limb suspension period. Subsequently, expression levels of constituents of the PGC-1 signaling network as well as key parameters of mitochondrial oxidative metabolism were investigated.

Results

In vitro, both knock-down as well as pharmacological inhibition of GSK-3β not only increased expression levels of important constituents of the PGC-1 signaling network, but also potentiated myogenic differentiation-associated increases in mitochondrial respiration, mitochondrial DNA copy number, oxidative phosphorylation (OXPHOS) protein abundance and the activity of key enzymes involved in the Krebs cycle and fatty acid β-oxidation. In addition, GSK-3β KO animals showed augmented reloading-induced increases in skeletal muscle gene expression of constituents of the PGC-1 signaling network as well as sub-units of OXPHOS complexes compared to wild-type animals.

Conclusion

Inactivation of GSK-3β stimulates activation of PGC-1 signaling and mitochondrial biogenesis during myogenic differentiation and reloading of the skeletal musculature.  相似文献   
96.
Deformamidoazidoantimycin A (DAA), a photoactive derivative of antimycin A containing an azido group substituting for the formamido group attached to the phenyl ring, was synthesized. The ultraviolet spectrum of DAA was almost identical to that of antimycin A, indicating little alteration of the electronic structure of the substituted phenyl ring by the azido substitution. However, the inhibitory effectiveness of DAA toward ubiquinol-cytochromec reductase (Complex III) purified from bovine heart (K i =ca. 0.5 µM) was considerably less than that of antimycin (K i 3 pM), indicating a direct rather than a supporting role of the formamido group in the inhibitory activity of antimycin. Exposure of purified Complex III to [3H]DAA plus ultraviolet light caused a major labeling by tritium of SDS-PAGE band 7 (m=13 kDa by SDS-PAGE) and lesser but significant labeling of bands 3, 6, 8, and 9. Pretreatment of Complex III with antimycin greatly suppressed the labeling of bands 5, 6, and 7 but caused an apparent increased labeling of bands 8 and 9 by [3H]DAA, respectively. The labeling of band 7 by [3H]DAA also was strongly suppressed by reduction of Complex III by either sodium borohybride or ascorbate. Based on magnitude of labeling by [3H]DAA and the degree of suppression of labeling by antimycin, the protein of band 7 qualified as the principal component for specific binding of antimycin with the protein of band 6 (m=16 kDa) showing a lesser but significant amount of specific binding.  相似文献   
97.
Plant (and fungal) mitochondria contain multiple NAD(P)H dehydrogenases in the inner membrane all of which are connected to the respiratory chain via ubiquinone. On the outer surface, facing the intermembrane space and the cytoplasm, NADH and NADPH are oxidized by what is probably a single low-molecular-weight, nonproton-pumping, unspecific rotenone-insensitive NAD(P)H dehydrogenase. Exogenous NADH oxidation is completely dependent on the presence of free Ca2+ with aK 0.5 of about 1 µM. On the inner surface facing the matrix there are two dehydrogenases: (1) the proton-pumping rotenone-sensitive multisubunit Complex I with properties similar to those of Complex I in mammalian and fungal mitochondria. (2) a rotenone-insensitive NAD(P)H dehydrogenase with equal activity with NADH and NADPH and no proton-pumping activity. The NADPH-oxidizing activity of this enzyme is completely dependent on Ca2+ with aK 0.5 of 3 µM. The enzyme consists of a single subunit of 26 kDa and has a native size of 76 kDa, which means that it may form a trimer.  相似文献   
98.
Question: How is tundra vegetation related to climatic, soil chemical, geological variables and grazing across a very large section of the Eurasian arctic area? We were particularly interested in broad‐scale vegetation‐environment relationships and how well do the patterns conform to climate‐vegetation schemes. Material and Methods: We sampled vegetation in 1132 plots from 16 sites from different parts of the Eurasian tundra. Clustering and ordination techniques were used for analysing compositional patterns. Vegetation‐environment relationships were analysed by fitting of environmental vectors and smooth surfaces onto non‐metric multidimensional scaling scattergrams. Results: Dominant vegetation differentiation was associated with a complex set of environmental variables. A general trend differentiated cold and continental areas from relatively warm and weakly continental areas, and several soil chemical and physical variables were associated with this broad‐scaled differentiation. Especially soil chemical variables related to soil acidity (pH, Ca) showed linear relationships with the dominant vegetation gradient. This was closely related to increasing cryoperturbation, decreasing precipitation and cooler conditions. Remarkable differences among relatively adjacent sites suggest that local factors such as geological properties and lemming grazing may strongly drive vegetation differentiation. Conclusions: Vegetation differentiation in tundra areas conforms to a major ecocline underlain by a complex set of environmental gradients, where precipitation, thermal conditions and soil chemical and physical processes are coupled. However, local factors such as bedrock conditions and lemming grazing may cause marked deviations from the general climate‐vegetation models. Overall, soil chemical factors (pH, Ca) turned out to have linear relationship with the broad‐scale differentiation of arctic vegetation.  相似文献   
99.
Evidence for parent-of-origin effects in complex diseases such as Multiple Sclerosis (MS) strongly suggests a role for epigenetic mechanisms in their pathogenesis. In this review, we describe the importance of accounting for parent-of-origin when identifying new risk variants for complex diseases and discuss how genomic imprinting, one of the best-characterized epigenetic mechanisms causing parent-of-origin effects, may impact etiology of complex diseases. While the role of imprinted genes in growth and development is well established, the contribution and molecular mechanisms underlying the impact of genomic imprinting in immune functions and inflammatory diseases are still largely unknown. Here we discuss emerging roles of imprinted genes in the regulation of inflammatory responses with a particular focus on the Dlk1 cluster that has been implicated in etiology of experimental MS-like disease and Type 1 Diabetes. Moreover, we speculate on the potential wider impact of imprinting via the action of imprinted microRNAs, which are abundantly present in the Dlk1 locus and predicted to fine-tune important immune functions. Finally, we reflect on how unrelated imprinted genes or imprinted genes together with non-imprinted genes can interact in so-called imprinted gene networks (IGN) and suggest that IGNs could partly explain observed parent-of-origin effects in complex diseases. Unveiling the mechanisms of parent-of-origin effects is therefore likely to teach us not only about the etiology of complex diseases but also about the unknown roles of this fascinating phenomenon underlying uneven genetic contribution from our parents.This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.  相似文献   
100.
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号