首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2660篇
  免费   265篇
  国内免费   68篇
  2024年   10篇
  2023年   57篇
  2022年   68篇
  2021年   105篇
  2020年   149篇
  2019年   158篇
  2018年   125篇
  2017年   107篇
  2016年   123篇
  2015年   171篇
  2014年   242篇
  2013年   278篇
  2012年   209篇
  2011年   219篇
  2010年   115篇
  2009年   152篇
  2008年   106篇
  2007年   124篇
  2006年   93篇
  2005年   72篇
  2004年   41篇
  2003年   52篇
  2002年   33篇
  2001年   18篇
  2000年   14篇
  1999年   12篇
  1998年   13篇
  1997年   13篇
  1996年   11篇
  1995年   13篇
  1994年   17篇
  1993年   9篇
  1992年   9篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
排序方式: 共有2993条查询结果,搜索用时 630 毫秒
81.
Abstract

Glycyrrhiza glabra L. is considered an important source of bioactive compounds. This study aimed at the development of an efficient solution for the treatment of oral candidiasis. Several extracts of Glycyrrhiza glabra L. were prepared using different solvents and their potential in vitro antifungal activity was assessed. Ethanolic extracts showed the most promising results against C. albicans. This extract was incorporated into mucoadhesive nanoparticles (PLA, PLGA and alginate), which were further included in an oral gel, an oral film and a toothpaste, respectively. The results showed that nanoparticles were successfully produced, presenting a mean size among 100–900?nm with high encapsulation efficiency. In vitro studies showed that the most bioadhesive formulation was the oral film with extract-loaded PLGA nanoparticles, followed by the toothpaste with extract-loaded alginate nanoparticles and the oral gel with extract-loaded PLA nanoparticles.  相似文献   
82.
The preparative‐scale separation of chiral compounds is vitally important for the pharmaceutical industry and related fields. Herein we report a simple approach for rapid preparative separation of enantiomers using functional nucleic acids modified gold nanoparticles (AuNPs). The separation of DL‐tryptophan (DL‐Trp) is demonstrated as an example to show the feasibility of the approach. AuNPs modified with enantioselective aptamers were added into a racemic mixture of DL‐Trp. The aptamer‐specific enantiomer (L‐Trp) binds to the AuNPs surface through aptamer‐L‐Trp interaction. The separation of DL‐Trp is then simply accomplished by centrifugation: the precipitate containing L‐Trp bounded AuNPs is separated from the solution, while the D‐Trp remains in the supernatant. The precipitate is then redispersed in water. The aptamer is denatured under 95 °C and a second centrifugation is then performed, resulting in the separation of AuNPs and L‐Trp. The supernatant is finally collected to obtain pure L‐Trp in water. The results show that the racemic mixture of DL‐Trp is completely separated into D‐Trp and L‐Trp, respectively, after 5 rounds of repeated addition of fresh aptamer‐modified AuNPs to the DL‐Trp mixture solution. Additionally, the aptamer‐modified AuNPs can be repeatedly used for at least eight times without significant loss of its binding ability because the aptamer can be easily denatured and renatured in relatively mild conditions. The proposed approach could be scaled up and extended to the separation of other enantiomers by the adoption of other enantioselective aptamers. Chirality 25:751–756, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
83.
Abstract

Complex network analysis has received increasing interest in recent years, which provides a remarkable tool to describe complex systems of interacting entities, particular for biological systems. In this paper, we propose a methodology for identifying the significant nodes of the networks, including core nodes, bridge nodes and high-influential nodes, based on the idea of community and two new ranking measures, InterRank and IntraRank. The results show the significant nodes form a small number in biological networks, and uncover the relative small number of which has advantage for reducing the dimensions of the network and possibly help to define new biological targets.  相似文献   
84.
A functional circadian clock has long been considered a selective advantage. Accumulating evidence shows that the clock coordinates a variety of physiological processes in order to schedule them to the optimal time of day and thus to synchronize metabolism to changes in external conditions. In mitochondria, both metabolic and cellular defense mechanisms are carefully regulated. Abnormal clock function, might influence mitochondrial function, resulting in decreased fitness of an organism.  相似文献   
85.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   
86.
Alginate-dextran sulfate (ADS) microgel has been used to protect insulin from gastrointestinal attack and as a carrier to promote insulin permeation through intestinal epithelium. The throughput of ADS submicron particles generation by emulsification/internal gelation is limited by its wide size distribution.  相似文献   
87.
In this study, the biodegradable mucoadhesive 4-carboxybenzensulfonamide chitosan (4-CBS–chitosan)/poly (lactic acid) (PLA) nanoparticles were fabricated by the electrospray ionization technique for enhancing anti-topoisomerase II (Topo II) activity. The obtained (4-CBS–chitosan/PLA)-DOX nanoparticles were characterized using SEM, particle size analyzer. We emphasis on encapsulation efficiency, in vitro drug release behavior and also performed in vitro studies of Topo II inhibitory activity using gel electrophoresis. In addition, the cytotoxicity of the 4-CBS–chitosan/PLA nanoparticles using MTT assay was also studied. The mean particle size of spherical shaped (4-CBS–chitosan/PLA)-DOX is less than 300 nm. The DOX loaded 4-CBS–chitosan/PLA composite nanoparticles produced high entrapment efficiency of 85.8% and provided the prolonged release of DOX extended to 26 days and also still had strong Topo II inhibitory activity up to 77.4%. Overall, it was shown that 4-CBS–chitosan/PLA nanoparticles could be promising carriers for controlled delivery of anticancer drugs.  相似文献   
88.
Glia maturation factor (GMF) is a member of the actin-depolymerizing factor (ADF)/cofilin family. ADF/cofilin promotes disassembly of aged actin filaments, whereas GMF interacts specifically with Arp2/3 complex at branch junctions and promotes debranching. A distinguishing feature of ADF/cofilin is that it binds tighter to ADP-bound than to ATP-bound monomeric or filamentous actin. The interaction is also regulated by phosphorylation at Ser-3 of mammalian cofilin, which inhibits binding to actin. However, it is unknown whether these two factors play a role in the interaction of GMF with Arp2/3 complex. Here we show using isothermal titration calorimetry that mammalian GMF has very low affinity for ATP-bound Arp2/3 complex but binds ADP-bound Arp2/3 complex with 0.7 μm affinity. The phosphomimetic mutation S2E in GMF inhibits this interaction. GMF does not bind monomeric ATP- or ADP-actin, confirming its specificity for Arp2/3 complex. We further show that mammalian Arp2/3 complex nucleation activated by the WCA region of the nucleation-promoting factor N-WASP is not affected by GMF, whereas nucleation activated by the WCA region of WAVE2 is slightly inhibited at high GMF concentrations. Together, the results suggest that GMF functions by a mechanism similar to that of other ADF/cofilin family members, displaying a preference for ADP-Arp2/3 complex and undergoing inhibition by phosphorylation of a serine residue near the N terminus. Arp2/3 complex nucleation occurs in the ATP state, and nucleotide hydrolysis promotes debranching, suggesting that the higher affinity of GMF for ADP-Arp2/3 complex plays a physiological role by promoting debranching of aged branch junctions without interfering with Arp2/3 complex nucleation.  相似文献   
89.
Our aim is to study selected cerebrospinal fluid (CSF) glycerophospholipids (GP) that are important in brain pathophysiology. We recruited cognitively healthy (CH), minimally cognitively impaired (MCI), and late onset Alzheimer''s disease (LOAD) study participants and collected their CSF. After fractionation into nanometer particles (NP) and supernatant fluids (SF), we studied the lipid composition of these compartments. LC-MS/MS studies reveal that both CSF fractions from CH subjects have N-acyl phosphatidylethanolamine, 1-radyl-2-acyl-sn-glycerophosphoethanolamine (PE), 1-radyl-2-acyl-sn-glycerophosphocholine (PC), 1,2-diacyl-sn-glycerophosphoserine (PS), platelet-activating factor-like lipids, and lysophosphatidylcholine (LPC). In the NP fraction, GPs are enriched with a mixture of saturated, monounsaturated, and polyunsaturated fatty acid species, while PE and PS in the SF fractions are enriched with PUFA-containing molecular species. PC, PE, and PS levels in CSF fractions decrease progressively in participants from CH to MCI, and then to LOAD. Whereas most PC species decrease equally in LOAD, plasmalogen species account for most of the decrease in PE. A significant increase in the LPC-to-PC ratio and PLA2 activity accompanies the GP decrease in LOAD. These studies reveal that CSF supernatant fluid and nanometer particles have different GP composition, and that PLA2 activity accounts for altered GPs in these fractions as neurodegeneration progresses.  相似文献   
90.
The rumen bacterium Ruminococcus flavefaciens produces a highly organized multienzyme cellulosome complex that plays a key role in the degradation of plant cell wall polysaccharides, notably cellulose. The R. flavefaciens cellulosomal system is anchored to the bacterial cell wall through a relatively small ScaE scaffoldin subunit, which bears a single type IIIe cohesin responsible for the attachment of two major dockerin-containing scaffoldin proteins, ScaB and the cellulose-binding protein CttA. Although ScaB recruits the catalytic machinery onto the complex, CttA mediates attachment of the bacterial substrate via its two putative carbohydrate-binding modules. In an effort to understand the structural basis for assembly and cell surface attachment of the cellulosome in R. flavefaciens, we determined the crystal structure of the high affinity complex (Kd = 20.83 nm) between the cohesin module of ScaE (CohE) and its cognate X-dockerin (XDoc) modular dyad from CttA at 1.97-Å resolution. The structure reveals an atypical calcium-binding loop containing a 13-residue insert. The results further pinpoint two charged specificity-related residues on the surface of the cohesin module that are responsible for specific versus promiscuous cross-strain binding of the dockerin module. In addition, a combined functional role for the three enigmatic dockerin inserts was established whereby these extraneous segments serve as structural buttresses that reinforce the stalklike conformation of the X-module, thus segregating its tethered complement of cellulosomal components from the cell surface. The novel structure of the RfCohE-XDoc complex sheds light on divergent dockerin structure and function and provides insight into the specificity features of the type IIIe cohesin-dockerin interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号