首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8441篇
  免费   1792篇
  国内免费   1188篇
  11421篇
  2024年   101篇
  2023年   370篇
  2022年   388篇
  2021年   543篇
  2020年   488篇
  2019年   468篇
  2018年   371篇
  2017年   437篇
  2016年   379篇
  2015年   398篇
  2014年   490篇
  2013年   582篇
  2012年   363篇
  2011年   414篇
  2010年   329篇
  2009年   448篇
  2008年   462篇
  2007年   495篇
  2006年   410篇
  2005年   404篇
  2004年   333篇
  2003年   307篇
  2002年   250篇
  2001年   192篇
  2000年   198篇
  1999年   182篇
  1998年   151篇
  1997年   125篇
  1996年   138篇
  1995年   116篇
  1994年   115篇
  1993年   88篇
  1992年   89篇
  1991年   86篇
  1990年   68篇
  1989年   71篇
  1988年   63篇
  1987年   69篇
  1986年   47篇
  1985年   58篇
  1984年   47篇
  1983年   32篇
  1982年   51篇
  1981年   37篇
  1980年   32篇
  1979年   21篇
  1978年   29篇
  1977年   25篇
  1976年   18篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
993.
Anisopteran leg functions change dramatically from the final larval stadium to the adult. Larvae use legs mainly for locomotion, walking, climbing, clinging, or burrowing. Adults use them for foraging and grasping mates, for perching, clinging to the vegetation, and for repelling rivals. In order to estimate the ontogenetic shift in the leg construction from the larva to the adult, this study quantitatively compared lengths of fore, mid, and hind legs and the relationships between three leg segments, femur, tibia, and tarsus, in larval and adult Anisoptera of the families Gomphidae, Aeshnidae, Cordulegastridae, Corduliidae, and Libellulidae, represented by two species each. We found that leg segment length ratio as well as ontogenetic shift in length ratios was different between families, but rather similar within the families. While little ontogenetic shift occurred in Aeshnidae, there were some modifications in Corduliidae and Libellulidae. The severest shift occurred in Gomphidae and Cordulegastridae, both having burrowing larvae. These two families form a cluster, which is in contrast to their taxonomic relationship within the Anisoptera. Cluster analysis implies that the function of larval legs is primarily responsible for grouping, whereas adult behavior or the taxonomic relationships do not explain the grouping. This result supports the previous hypothesis about the convergent functional shift of leg characters in the dragonfly ontogenesis.  相似文献   
994.
Previous studies with the tocopherol‐deficient Arabidopsis thaliana vte2 mutant demonstrated an important role for tocopherols in the development of transfer cell walls and maintenance of photoassimilate export capacity during low‐temperature (LT) adaptation. To further understand the processes linking tocopherol deficiency and the vte2 LT phenotypes, a genetic screen was performed for sve mutations (suppressor of the vte2 low temperature‐induced phenotype). The three strongest sve loci had differing impacts on LT‐induced sugar accumulation, photoassimilate export reduction and vascular‐specific callose deposition in vte2. sve1 completely suppressed all vte2 LT phenotypes and is a new allele of fad2, the endoplasmic reticulum‐localized oleate desaturase. sve2 showed partial suppression, and is a new allele of trigalactosyldiacylglycerol1 (tgd1), a component of the ER‐to‐plastid lipid ATP‐binding cassette (ABC) transporter. Introduction of tgd2, tgd3 and tgd4 mutations into the vte2 background similarly suppressed the vte2 LT phenotypes, indicating a key role for ER‐to‐plastid lipid transport in the vte2 LT phenotype. sve7 partially suppressed all vte2 LT phenotypes by affecting fatty acid and lipid metabolism at low temperatures only. Detailed analyses of acyl lipid composition indicated that all suppressors alleviated the increase in the level of linoleic acid esterified to phosphatidylcholine (PC‐18:2) in LT‐treated vte2, and this alleviation significantly correlated with their extent of suppression of photoassimilate export. Identification and characterization of the sve loci showed that the PC‐18:2 change is an early and key component in vte2 LT‐induced responses, and highlighted the interaction of tocopherols with non‐plastid lipid metabolism.  相似文献   
995.
Despite recent advances, accurate gene function prediction remains an elusive goal, with very few methods directly applicable to the plant Arabidopsis thaliana. In this study, we present GO‐At (gene ontology prediction in A. thaliana), a method that combines five data types (co‐expression, sequence, phylogenetic profile, interaction and gene neighbourhood) to predict gene function in Arabidopsis. Using a simple, yet powerful two‐step approach, GO‐At first generates a list of genes ranked in descending order of probability of functional association with the query gene. Next, a prediction score is automatically assigned to each function in this list based on the assumption that functions appearing most frequently at the top of the list are most likely to represent the function of the query gene. In this way, the second step provides an effective alternative to simply taking the ‘best hit’ from the first list, and achieves success rates of up to 79%. GO‐At is applicable across all three GO categories: molecular function, biological process and cellular component, and can assign functions at multiple levels of annotation detail. Furthermore, we demonstrate GO‐At’s ability to predict functions of uncharacterized genes by identifying ten putative golgins/Golgi‐associated proteins amongst 8219 genes of previously unknown cellular component and present independent evidence to support our predictions. A web‐based implementation of GO‐At ( http://www.bioinformatics.leeds.ac.uk/goat ) is available, providing a unique resource for plant researchers to make predictions for uncharacterized genes and predict novel functions in Arabidopsis.  相似文献   
996.
苏洪全  朱义胜  姜玉梅 《生物信息学》2010,8(4):356-358,363
基因表达系列分析(Serial analysis of gene expression,SAGE)是一种基因表达数据,反映了细胞内的动态变化。模式识别和可视化方法是分析SAGE数据的基本工具,但是由于缺乏描述数据的统计特性,传统的聚类分析技术不适用于SAGE数据的分析。本文提出了一种基于多分类和支持向量机的SAGE数据的分析法。经过对模拟数据和人类癌症SAGE数据的分析,基于径向基核函数的多分类支持向量机算法"一对一"(one-against-one,OAO)算法提供了比PoissonC和PoissonS更好的分类结果。  相似文献   
997.
Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n = 127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M1 and M2 is small. In contrast, Aterian H. sapiens root surface areas peak at M2. Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens.  相似文献   
998.
Following human arrival, Madagascar suffered well-documented megafaunal extinctions and widespread deforestation. Although humans are widely considered to be the primary cause of the extinctions, the relative contributions of climate change and human activities to this ecological transformation remain uncertain. Reconstructing the habitats of the giant lemurs of Madagascar can provide key information for understanding the evolutionary mechanisms involved in their extinction. In this study, I present a faunal analysis of the subfossil assemblage from Ankilitelo Cave, southwestern Madagascar. This assemblage documents the latest known occurrence of five species of extinct giant lemur, in association with abundant well-preserved small mammal remains. I compared the small mammal fauna at Ankilitelo with 27 extant Malagasy mammal communities spanning the range of Madagascar's habitat types. Similarities in species composition between modern communities and Ankilitelo were assessed using cluster analysis. Ecological similarities were examined by assigning each species to dietary, locomotor, activity pattern, and body size categories. Multiple discriminant analysis was then used to classify Ankilitelo relative to modern habitat types in Madagascar, based on the ecological structure of the subfossil fauna. Results indicate that the habitat surrounding Ankilitelo during the late Holocene was similar to the succulent woodlands of modern southwestern Madagascar. This suggests that approximately 500 yr BP, these semi-arid habitats supported a subfossil lemur community that included the highly-suspensory Palaeopropithecus, and deliberate slow-climber Megaladapis, as well as Archaeolemur, Pachylemur, and Daubentonia robusta. In such environments, these giant lemurs would likely have been highly vulnerable to increasing human pressure in southwestern Madagascar.  相似文献   
999.
1000.
Free methionine-R-sulfoxide reductase (fRMsr) is a new type of methionine sulfoxide reductase that catalyzes the reduction of free methionine-R-sulfoxide to methionine. This enzyme cannot reduce oxidized methionine residues in proteins. While three Cys residues, Cys-91, Cys-101 and Cys-125, have been demonstrated to be involved in the catalysis by Saccharomyces cerevisiae fRMsr, their specific functions have not been fully established. In this work, we performed in vivo growth complementation experiments using S. cerevisiae cells lacking all three known methionine sulfoxide reductases. Cells containing a C125S construct, in which Cys-125 in fRMsr was replaced with Ser, did not grow in methionine sulfoxide medium, whereas cells containing C91S, C101S, or C91/101S constructs could grow in this medium. In addition, when assayed with thioredoxin and glutaredoxin reduction systems, the C125S form was inactive, whereas C91S and C101S had 1-2% and 9-10%, respectively, of the activity of the wild-type fRMsr. These data show that Cys-125 is the catalytic residue in fRMsr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号