全文获取类型
收费全文 | 4756篇 |
免费 | 528篇 |
国内免费 | 982篇 |
专业分类
6266篇 |
出版年
2024年 | 20篇 |
2023年 | 102篇 |
2022年 | 99篇 |
2021年 | 141篇 |
2020年 | 222篇 |
2019年 | 197篇 |
2018年 | 206篇 |
2017年 | 213篇 |
2016年 | 234篇 |
2015年 | 194篇 |
2014年 | 229篇 |
2013年 | 265篇 |
2012年 | 206篇 |
2011年 | 270篇 |
2010年 | 187篇 |
2009年 | 256篇 |
2008年 | 265篇 |
2007年 | 288篇 |
2006年 | 234篇 |
2005年 | 232篇 |
2004年 | 167篇 |
2003年 | 195篇 |
2002年 | 164篇 |
2001年 | 138篇 |
2000年 | 154篇 |
1999年 | 120篇 |
1998年 | 98篇 |
1997年 | 109篇 |
1996年 | 91篇 |
1995年 | 86篇 |
1994年 | 80篇 |
1993年 | 90篇 |
1992年 | 94篇 |
1991年 | 70篇 |
1990年 | 66篇 |
1989年 | 50篇 |
1988年 | 55篇 |
1987年 | 46篇 |
1986年 | 34篇 |
1985年 | 47篇 |
1984年 | 39篇 |
1983年 | 36篇 |
1982年 | 37篇 |
1981年 | 21篇 |
1980年 | 24篇 |
1979年 | 21篇 |
1978年 | 15篇 |
1977年 | 16篇 |
1976年 | 14篇 |
1975年 | 12篇 |
排序方式: 共有6266条查询结果,搜索用时 15 毫秒
81.
82.
Brian L. Williams Robert W. Holtfreter Stephen S. Ditchkoff James B. Grand 《The Journal of wildlife management》2011,75(2):432-436
Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is the most commonly used method of population control for many public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap. We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and re-entered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. © 2011 The Wildlife Society. 相似文献
83.
Under well-watered conditions in the laboratory, Sedum pulchellum assimilated CO2 only during the day, yet exhibited small nocturnal increases in tissue acid content followed by deacidification in the light (CAM-cycling). When drought-stressed, little CO2 was fixed in the day and none at night, yet even greater acid fluctuations were observed (CAM-idling). Calculations indicate that water savings associated with CAM-cycling when water is available are small. Water saving is more likely to be significant during CAM-idling when water supply is limited and stomata are closed day and night. Thus, in this species, CAM-idling may be of greater benefit to the plant, relative to CAM-cycling, in surviving habitats prone to frequent drought stress.Abbreviations A
CO2 exchange rate
- CAM
Crassulacean acid metabolism
- ci
shoot internal CO2 concentration
- gc
shoot conductance to CO2
- PPFD
photosynthetic photon flux density
- WUE
water-use efficiency
Supported by National Science Foundation Grant No. DMB 8506093. 相似文献
84.
Transpiration and photosynthesis of current-year stems and adult leaves of different deciduous tree species were investigated
to estimate their probable influence on carbon balance. Peridermal transpiration of young stems was found to be rather small
as compared to the transpiration of leaves (stem/leaf like 1/5–1/20). A characteristic that was mainly attributable to the
lower peridermal conductance to water and CO2, which made up only 8–28% of stomatal conductance. Water vapour conductance was significantly lower in stems, but also non-responsive
to PAR, which led to a comparatively higher water use efficiency (WUE, ratio assimilation/transpiration). Thus, although corticular
photosynthesis reached only 11–37% of leaf photosynthesis, it may be a means of improving the carbon balance of stems under
limited water availability. The influence of drought stress on primary photosynthetic reactions was also studied. Under simulated
drought conditions the drying time needed to provoke a 50% reduction (t
50) in dark- and light-adapted PSII efficiency (Fv/Fm, ΔF/Fm′) was up to ten times higher in stems than in leaves. Nevertheless,
up to a relative water deficit (RWD) of around 40–50% dark-adapted PSII efficiency of leaves and stems was rather insensitive
to dehydration, showing that the efficiency of open PS II reaction centres is not impaired. Thus, it may be concluded that
in stems as well as in leaves the primary site of drought damage is at the level of dark enzyme reactions and not within PSII.
However, enduring severe drought caused photoinhibitory damage to the photosynthetic apparatus of leaves and stems; thereby
RWD50 values (= RWD needed to provoke a 50% reduction in Fv/Fm ad ΔF/Fm′) were comparably lower in stems as compared to leaves,
indicating a possibly higher drought sensitivity of the cortex chlorenchyma. 相似文献
85.
Two-month-old seedlings of Sophora davidii were subjected to a randomized complete block design with three water (80, 40, and 20 % of water field capacity, i.e. FC80, FC40, and FC20) and three N supply [N0: 0, Nl: 92 and Nh: 184 mg(N) kg−1(soil)] regimes. Water stress produced decreased leaf area (LA) and photosynthetic pigment contents, inhibited photosynthetic
efficiency, and induced photodamage in photosystem 2 (PS2), but increased specific leaf area (SLA). The decreased net photosynthetic
rate (P
N) under medium water stress (FC40) compared to control (FC80) might result from stomatal limitations, but the decreased P
N under severe water deficit (FC20) might be attributed to non-stomatal limitations. On the other hand, N supply could improve photosynthetic capacity by increasing
LA and photosynthetic pigment contents, and enhancing photosynthetic efficiency under water deficit. Moreover, N supply did
a little in alleviating photodamages to PS2 caused by water stress. Hence water stress was the primary limitation in photosynthetic
processes of S. davidii seedlings, while the photosynthetic characters of seedlings exhibited positive responses to N supply. Appropriate N supply
is recommended to improve photosynthetic efficiency and alleviate photodamage under water stress. 相似文献
86.
Elevated CO2 (ambient + 35 Pa) increased shoot dry mass production in Avena fatua by 68% at maturity. This increase in shoot biomass was paralleled by an 81% increase in average net CO2 uptake (A) per unit of leaf area and a 65% increase in average A at the ecosystem level per unit of ground area. Elevated CO2 also increased ecosystem A per unit of biomass. However, the products of total leaf area and light-saturated leaf A divided by the ground surface area over time appeared to lie on a single response curve for both CO2 treatments. The approximate slope of the response suggests that the integrated light saturated capacity for leaf photosynthesis is 10-fold greater than the ecosystem rate. Ecosystem respiration (night) per unit of ground area, which includes soil and plant respiration, ranged from-20 (at day 19) to-18 (at day 40) mol m-2 s-1 for both elevated and ambient CO2
Avena. Ecosystem below-ground respiration at the time of seedling emergence was -10 mol m-2 s-1, while that occuring after shoot removal at the termination of the experiment ranged from -5 to-6 mol m-2 s-1. Hence, no significant differences between elevated and ambient CO2 treatments were found in any respiration measure on a ground area basis, though ecosystem respiration on a shoot biomass basis was clearly reduced by elevated CO2. Significant differences existed between leaf and ecosystem water flux. In general, leaf transpiration (E) decreased over the course of the experiment, possibly in response to leaf aging, while ecosystem rates of evapotranspiration (ET) remained constant, probably because falling leaf rates were offset by an increasing total leaf biomass. Transpiration was lower in plants grown at elevated CO2, though variation was high because of variability in leaf age and ambient light conditions and differences were not significant. In contrast, ecosystem evapotranspiration (ET) was significantly decreased by elevated CO2 on 5 out of 8 measurement dates. Photosynthetic water use efficiencies (A/E at the leaf level, A/ET at the ecosystem level) were increased by elevated CO2. Increases were due to both increased A at leaf and ecosystem level and decreased leaf E and ecosystem ET. 相似文献
87.
Geostrategic Supply Risk and Economic Importance as Drivers for Implementation of Industrial Ecology Measures in a Nitrogen Fertilizer Production Company 下载免费PDF全文
Milda Malinauskienė Irina Kliopova Christoph Hugi Jurgis Kazimieras Staniškis 《Journal of Industrial Ecology》2018,22(2):422-433
Among other concerns, safeguarding the supply chains of raw materials is an important task for industrial companies. Therefore, not surprisingly, the number of scientific publications concerning the evaluation of resource criticality has increased in recent years. However, it was noticed that currently published methodologies are too complex to be applied by industrial companies on a daily basis. For this reason, the need to develop a methodology that would allow not only assessing resource criticality, but could also be integrated into widely applied methodological frameworks as an additional driver to improve resource efficiency was identified. Geostrategic supply risk and economic importance were chosen as key indicators to analyze and assess relative resource criticality. The developed methodology was field tested by applying it to a resource‐intensive nitrogen fertilizer production company. Five scenarios for resource efficiency improvements, consisting of cleaner production and industrial symbiosis measures, were investigated. If all the proposed measures were implemented, consumption of natural gas would decrease by 3.552 million cubic meters per year (0.3% of the total consumption). However, not all identified measures contribute to a reduction of the overall criticality of resources for the production company. Nevertheless, the integration of criticality assessments into the widely applied methodologies for development and implementation of resource efficiency innovations is a valuable addition and should be included in the analysis for sustainable innovations and development. 相似文献
88.
Light use efficiency (LUE) is an important variable in carbon cycle and climate change research. We present an investigation of remotely estimating midday LUE using the green chlorophyll index (CIgreen) derived from the cloud-free Moderate Resolution Imaging Spectroradiometer (MODIS) images in maize, coniferous forest and grassland. Similar temporal patterns are observed in both canopy chlorophyll content and midday LUE which indicates that the chlorophyll content in the maize canopy servers as a proxy of midday LUE (R2 = 0.736, p < 0.001). Therefore, the CIgreen, tested as a good indicator of canopy chlorophyll content (R2 = 0.840, p < 0.001), has been demonstrated to be a reliable candidate in providing reasonable estimates of midday LUE with determination coefficient R2 equals to 0.820 and a root mean square error (RMSE) of 0.002 mol CO2 per mol incident photosynthetic photon flux density (PPFD). Further validation of the prediction model derived from the maize site demonstrates that the CIgreen has potential to be applied in the coniferous forest and grassland ecosystems with RMSE of 0.005 and 0.004 mol CO2 mol−1 PPFD, respectively. A comparison analysis between different vegetation types is included and these results could be helpful in the development of future LUE and terrestrial models. 相似文献
89.
doi: 10.1111/j.1741‐2358.2010.00414.x Effect of bone mineral density on masticatory performance and efficiency Objective: To evaluate the effect of bone mineral density (BMD) on masticatory performance and efficiency in dentate subjects. Background data: Osteoporosis is the most common disorder of the bone. It causes reduction in BMD of the all the skeletal tissue including jaw bones. It also promotes bone loss in jaw bones. In osteoporosis, a reduction of maximal bite force and greater electromyography activity of masticatory muscles is documented. This may lead to the development of masticatory dysfunction which can be assessed by a chewing test in the form of change in masticatory performance and efficiency. Materials and methods: Sixty subjects with equal numbers of men and women were selected for the study, in which BMD screening (T‐score) was carried out to identify the normal, osteopenic and osteoporotic subjects. Their masticatory performance and efficiency was evaluated by a chewing test (fractional sieving method). Results: A high ‘T’ score was associated with low masticatory efficiency and a low ‘T’ score with high masticatory efficiency. Masticatory performance and efficiency was significantly higher among males as compared to females with similar range of BMD. Conclusion: In both genders, high BMD groups (low ‘T’ score) had a significantly high percentage of masticatory efficiency compared to the low BMD (high ‘T’ score) group. 相似文献
90.
Liu J Luo X Shaff J Liang C Jia X Li Z Magalhaes J Kochian LV 《The Plant journal : for cell and molecular biology》2012,71(2):327-337
The primary mechanism of Arabidopsis aluminum (Al) resistance is based on root Al exclusion, resulting from Al-activated root exudation of the Al(3+) -chelating organic acids, malate and citrate. Root malate exudation is the major contributor to Arabidopsis Al resistance, and is conferred by expression of AtALMT1, which encodes the root malate transporter. Root citrate exudation plays a smaller but still significant role in Arabidopsis Al resistance, and is conferred by expression of AtMATE, which encodes the root citrate transporter. In this study, we demonstrate that levels of Al-activated root organic acid exudation are closely correlated with expression of the organic acid transporter genes AtALMT1 and AtMATE. We also found that the AtALMT1 promoter confers a significantly higher level of gene expression than the AtMATE promoter. Analysis of AtALMT1 and AtMATE tissue- and cell-specific expression based on stable expression of promoter-reporter gene constructs showed that the two genes are expressed in complementary root regions: AtALMT1 is expressed in the root apices, while AtMATE is expressed in the mature portions of the roots. As citrate is a much more effective chelator of Al(3+) than malate, we used a promoter-swap strategy to test whether root tip-localized expression of the AtMATE coding region driven by the stronger AtALMT1 promoter (AtALMT1(P)::AtMATE) resulted in increased Arabidopsis Al resistance. Our results indicate that expression of AtALMT1(P)::AtMATE not only significantly increased Al resistance of the transgenic plants, but also enhanced carbon-use efficiency for Al resistance. 相似文献