首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   882篇
  免费   55篇
  国内免费   20篇
  2024年   2篇
  2023年   17篇
  2022年   29篇
  2021年   41篇
  2020年   40篇
  2019年   41篇
  2018年   44篇
  2017年   40篇
  2016年   33篇
  2015年   39篇
  2014年   56篇
  2013年   93篇
  2012年   18篇
  2011年   37篇
  2010年   38篇
  2009年   35篇
  2008年   45篇
  2007年   38篇
  2006年   25篇
  2005年   23篇
  2004年   19篇
  2003年   24篇
  2002年   17篇
  2001年   16篇
  2000年   14篇
  1999年   11篇
  1998年   11篇
  1997年   13篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   10篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   11篇
  1988年   4篇
  1987年   5篇
  1985年   4篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有957条查询结果,搜索用时 15 毫秒
61.
62.
63.
Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site- specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D/D–1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D/D1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems.  相似文献   
64.
Certain pathogenic trypanosomatids are highly dependent on glycolysis for ATP production, and hence their glycolytic enzymes, including glycerol-3-phosphate dehydrogenase (GPDH), are considered attractive drug targets. The ternary complex structure of Leishmania mexicana GPDH (LmGPDH) with dihydroxyacetone phosphate (DHAP) and NAD(+) was determined to 1.9A resolution as a further step towards understanding this enzyme's mode of action. When compared with the apo and binary complex structures, the ternary complex structure shows an 11 degrees hinge-bending motion of the C-terminal domain with respect to the N-terminal domain. In addition, residues in the C-terminal domain involved in catalysis or substrates binding show significant movements and a previously invisible five-residue loop region becomes well ordered and participates in NAD(+) binding. Unexpectedly, DHAP and NAD(+) appear to form a covalent bond, producing an adduct in the active site of LmGPDH. Modeling a ternary complex glycerol 3-phosphate (G3P) and NAD(+) with LmGPDH identified ten active site residues that are highly conserved among all GPDHs. Two lysine residues, Lys125 and Lys210, that are presumed to be critical in catalysis, were mutated resulting in greatly reduced catalytic activity. Comparison with other structurally related enzymes found by the program DALI suggested Lys210 as a key catalytic residue, which is located on a structurally conserved alpha-helix. From the results of site-directed mutagenesis, molecular modeling and comparison with related dehydrogenases, a catalytic mechanism of LmGPDH and a possible evolutionary scenario of this group of dehydrogenases are proposed.  相似文献   
65.
This analysis deals with advances in tissue-engineering models and computational methods as well as with novel results on the relative importance of "controlling forces" in the growth of organic constructs. Specifically, attention is focused on the rotary culture system, because this technique has proven to be the most practical solution for providing a suitable culture environment supporting three-dimensional tissue assemblies. From a numerical point of view, the growing biological specimen gives rise to a moving boundary problem. A "volume-of-fraction" method is specifically and carefully developed according to the complex properties and mechanisms of organic tissue growth and, in particular, taking into account the sensitivity of the construct/liquid interface to the effect of the fluid-dynamic shear stress (it induces changes in tissue metabolism and function that elicit a physiological response from the biological cells). The present study uses available data to introduce a set of growth models. The surface conditions are coupled to the transfer of mass and momentum at the specimen/culture-medium interface and lead to the introduction of a group of differential equations for the nutrient concentration around the sample and for the evolution of tissue mass displacement. The models are then used to show how the proposed surface kinetic laws can predict (through sophisticated numerical simulations) many of the known characteristics of biological tissues grown using rotating-wall perfused vessel bioreactors. This procedure provides a validation of the models and associated numerical method and also gives insight into the mechanisms of the phenomena. The interplay between the increasing size of the tissue and the structure of the convective field is investigated. It is shown that this interaction is essential in determining the time evolution of the tissue shape. The size of the growing specimen plays a critical role with regard to the intensity of convection and the related shear stresses. Convective effects, in turn, are found to impact growth rates, tissue size, and morphology, as well as the mechanisms driving growth. The method exhibits novel capabilities to predict and elucidate experimental observations and to identify cause-and-effect relationships.  相似文献   
66.
Correlated motion and oscillation of neighboring cells in vitro   总被引:2,自引:0,他引:2  
It has long been realized that fibroblastic and epithelial cells establish recognizable patterns in tissue culture. This behavior implies that neighboring cells interact with one another to produce organized populations. Interaction between cells that are separated by many intervening cells is also possible and is demonstrated here using a special configuration of a biosensor referred to as electric cell-substrate impedance sensing (ECIS). Normally the electrical impedance of a single electrode covered with a confluent cell layer is measured, and the morphological changes of the cells are reflected in the impedance. In this case the cells are cultured on two closely spaced electrodes whose impedances are measured independently as a function of time, and communication between the cell populations is revealed as a correlation between these two time series. We also report for the first time another striking manifestation of dynamic cell interaction, where confluent layers of Madin-Darby canine kidney cells (MDCK) on a single electrode are observed to oscillate in synchrony with a period of approximately 2.5 h.  相似文献   
67.
Harata K  Kanai R 《Proteins》2002,48(1):53-62
The crystal structure of turkey egg lysozyme (TEL) complexed with di-N-acetylchitobiose (NAG2) was refined at 1.19 A resolution by the full-matrix least-squares method with anisotropic temperature factors, and its thermal motion was evaluated by the TLS method. The average ESDs of atomic parameters of nonhydrogen atoms were 0.030 A for coordinates and 0.025 A(2) for anisotropic temperature factors. The active site cleft of TEL binds the alpha-anomer of NAG2 in a nonproductive binding mode with its pyranose rings parallel to a beta-sheet. The TEL structure was compared with the re-refined 1.12 A structure of native TEL. The RMS difference for equivalent Calpha atoms was 0.103 A and a relatively large difference was observed in the region of residues 104-125 rather than in the beta-sheet region where NAG2 was bound. In contrast, the temperature factor of the beta-sheet region was significantly decreased by the NAG2 binding. The TLS model that describes the rigid body motion in translation, libration, and screw motion was adopted for the evaluation of the molecular motion of TEL and NAG2, and the TLS parameters were determined by the least-squares fit to U(ij). The contribution of the external motion of TEL was estimated to be 55.8% of the observed temperature factor for the native structure and 45.9% for the NAG2 complex. The internal motion of TEL represented with atomic thermal ellipsoids was very similar between the native and complex structures except the NAG2 binding region. In the structure of NAG2, the rigid body motion dominates the thermal motion. The center of rotation of NAG2, 4.45A far from the center of gravity, is on the nitrogen atom of the acetylamino group that is hydrogen bonded to the main-chain peptide groups of Asn49 and Ala107. The rigid body motion of NAG2 indicates that the acetylamino group is most strongly bound to the active site, and the recognition of this group is a crucial step of the substrate binding.  相似文献   
68.
Among a superfamily of myosin, class VI myosin moves actin filaments backwards. Here we show that myosin VI moves processively on actin filaments backwards with large ( approximately 36 nm) steps, nevertheless it has an extremely short neck domain. Myosin V also moves processively with large ( approximately 36 nm) steps and it is believed that myosin V strides along the actin helical repeat with its elongated neck domain that is critical for its processive movement with large steps. Myosin VI having a short neck cannot take this scenario. We found by electron microscopy that myosin VI cooperatively binds to an actin filament at approximately 36 nm intervals in the presence of ATP, raising a hypothesis that the binding of myosin VI evokes "hot spots" on actin filaments that attract myosin heads. Myosin VI may step on these "hot spots" on actin filaments in every helical pitch, thus producing processive movement with 36 nm steps.  相似文献   
69.
Miyoshi H  Masaki N  Tsuchiya Y 《Protoplasma》2003,222(3-4):175-181
Summary. We investigated the behavior of migration of Amoeba proteus in an isotropic environment. We found that the trajectory in the migration of A. proteus is smooth in the observation time of 500-1000 s, but its migration every second (the cell velocity) on the trajectory randomly changes. Stochastic analysis of the cell velocity and the turn angle of the trajectory has shown that the histograms of the both variables well fit to Gaussian curves. Supposing a simple model equation for the cell motion, we have estimated the motive force of the migrating cell, which is of the order of piconewton. Furthermore, we have found that the cell velocity and the turn angle have a negative cross-correlation coefficient, which suggests that the amoeba explores better environment by changing frequently its migrating direction at a low speed and it moves rectilinearly to the best environment at a high speed. On the other hand, the model equation has simulated the negative correlation between the cell velocity and the turn angle. This indicates that the apparently rational behavior comes from intrinsic characteristics in the dynamical system where the motive force is not torquelike.  相似文献   
70.
High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号