首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   31篇
  国内免费   4篇
  304篇
  2024年   1篇
  2023年   13篇
  2022年   5篇
  2021年   11篇
  2020年   13篇
  2019年   3篇
  2018年   8篇
  2017年   10篇
  2016年   13篇
  2015年   10篇
  2014年   13篇
  2013年   19篇
  2012年   14篇
  2011年   8篇
  2010年   13篇
  2009年   16篇
  2008年   17篇
  2007年   13篇
  2006年   17篇
  2005年   6篇
  2004年   11篇
  2003年   14篇
  2002年   9篇
  2001年   11篇
  2000年   5篇
  1999年   1篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1977年   4篇
  1970年   1篇
排序方式: 共有304条查询结果,搜索用时 9 毫秒
161.
When centrosomes are destroyed during prophase by laser microsurgery, vertebrate somatic cells form bipolar acentrosomal mitotic spindles (Khodjakov, A., R.W. Cole, B.R. Oakley, and C.L. Rieder. 2000. Curr. Biol. 10:59-67), but the fate of these cells is unknown. Here, we show that, although these cells lack the radial arrays of astral microtubules normally associated with each spindle pole, they undergo a normal anaphase and usually produce two acentrosomal daughter cells. Relative to controls, however, these cells exhibit a significantly higher (30-50%) failure rate in cytokinesis. This failure correlates with the inability of the spindle to properly reposition itself as the cell changes shape. Also, we destroyed just one centrosome during metaphase and followed the fate of the resultant acentrosomal and centrosomal daughter cells. Within 72 h, 100% of the centrosome-containing cells had either entered DNA synthesis or divided. By contrast, during this period, none of the acentrosomal cells had entered S phase. These data reveal that the primary role of the centrosome in somatic cells is not to form the spindle but instead to ensure cytokinesis and subsequent cell cycle progression.  相似文献   
162.
The trigeminal, the fifth cranial nerve of vertebrates, represents the rostralmost component of the nerves assigned to pharyngeal arches. It consists of the ophthalmic and maxillomandibular nerves, and in jawed vertebrates, the latter is further divided into two major branches dorsoventrally. Of these, the dorsal one is called the maxillary nerve because it predominantly innervates the upper jaw, as seen in the human anatomy. However, developmentally, the upper jaw is derived not only from the dorsal part of the mandibular arch, but also from the premandibular primordium: the medial nasal prominence rostral to the mandibular arch domain. The latter component forms the premaxillary region of the upper jaw in mammals. Thus, there is an apparent discrepancy between the morphological trigeminal innervation pattern and the developmental derivation of the gnathostome upper jaw. To reconcile this, we compared the embryonic developmental patterns of the trigeminal nerve in a variety of gnathostome species. With the exception of the diapsid species studied, we found that the maxillary nerve issues a branch (nasopalatine nerve in human) that innervates the medial nasal prominence derivatives. Because the trigeminal nerve in cyclostomes also possesses a similar branch, we conclude that the vertebrate maxillomandibular nerve primarily has had a premandibular branch as its dorsal element. The presence of this branch would thus represent the plesiomorphic condition for the gnathostomes, implying its secondary loss within some lineages. The branch for the maxillary process, more appropriately called the palatoquadrate component of the maxillary nerve (V2), represents the apomorphic gnathostome trait that has evolved in association with the acquisition of an upper jaw. J. Morphol. 275:17–38, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
163.
"睡美人"转座子的研究进展   总被引:1,自引:0,他引:1  
谢飞  高波  宋成义  陈国宏 《遗传》2007,29(7):785-792
“睡美人( Sleeping Beauty, SB) ”转座系统是Tc1/mariner 转座子超家族中的一员,已经失活了一千多万年。1997年,Ivics 等根据积累的系统发生数据,利用生物信息学的方法, 对其进行分子重建, 终于唤醒了其转座活性。近年来对“睡美人”转座系统的转座效率和转座机理进行的研究,已证明SB转座子在基因筛选,转基因及基因治疗等领域具有广阔的应用前景。文章重点论述了SB转座子在结构及其优化、转座机制和应用等方面的进展,同时对其研究中出现的各种问题进行了总结并提出了一些解决方案。  相似文献   
164.
为了及时掌握脊椎动物在中国的新增情况, 本文汇总了2021年发表的脊椎动物新物种及新记录种的基本信息。结果表明, 2021年中国新增脊椎动物95种, 包括新种80种, 新记录15种。其中鱼类新种15种、两栖类新种28种、爬行类新种31种和新记录10种、鸟类新种1种和新记录3种、哺乳类新种5种和新记录2种。在新增物种中, 冷血脊椎动物占绝大多数(占总数的88%), 提示这些类群可能仍是以后探索的重点; 两栖类新增物种集中于无尾目、爬行类集中于有鳞目, 分别为27种和40种, 各占其新增物种总数的96%和98%; 新增哺乳类动物全部为小型兽类。本次新增物种的分布涉及30个省区, 其中云南33种、四川11种、广西10种、西藏和广东均为7种、台湾6种, 累计约占新增物种总数的70.5%; 其余省区新增物种在5种或以下。有84个物种(占总数的88%)发表时应用了分子系统学研究, 提示这一技术手段是分类工作的重要支撑。在新发现的95个物种中, 绝大部分物种为中国学者发表; 除3种鸟类新记录种外, 其余的新种和新记录均正式发表于英文期刊, 其中在中国出版的3种期刊发表了21个新种和2个新记录种。本文工作可为中国脊椎动物的分类和保护等相关工作提供基础信息。  相似文献   
165.
The evolution of bipedal postures in varanoid lizards   总被引:1,自引:1,他引:0  
The bipedal posture (BP) and gait of humans are unique evolutionary hallmarks, but similar stances and forms of locomotion have had enormous influences on a range of phylogenetically diverse tetrapods, particularly dinosaurs and birds, and a range of mammalian lineages, including non-human apes. The complex movements involved in bipedalism appear to have modest evolutionary origins, and it is presumed that a stable and erect posture is a prerequisite for erect strides and other bipedal movements. Facultative bipedalism in several lineages of lizards is achieved by running, but some varanid lizards (genus Varanus) exhibit BPs without running. In these cases, BPs (BPstanding) are not used as a form of locomotion; rather, BPstanding is associated with defensive displays, and such postures also probably permit better inspection of the environment. Yet, in other varanids, BPs have been observed only during combat episodes (BPcombat), where both contestants rise together and embrace in the so-called clinch phase. Numerous other species, however, show neither type of BP. Past researchers have commented that only large-bodied varanids exhibit BP, a behaviour that appears to show phylogenetic trends. We termed this idea the King–Green–Pianka (KGP) bipedal hypothesis. In this article, we address two main questions derived from the KGP hypothesis. First, what is the phylogenetic distribution of BP in Varanus and close relatives (varanoids)? Second, is BP positively correlated with the phylogenetic distribution of large body size (e.g. snout–vent length, SVL)? In addition, we asked a related question: do the lengths of the femur and tail show body size-independent adaptive trends in association with BP? Because varanid species that show BPstanding also use these postures during combat (BPcombat), both types of BP were analysed collectively and simply termed BP. Using comparative phylogenetic analyses, the reconstruction of BP required three steps, involving a single gain and two losses. Specifically, BP was widespread in the monophyletic Varanus, and the single gain occurred at the most recent common ancestor of the African clade. The two losses of BP occurred in different clades (Indo-Asian B clade and Indo-Australian Odatria clade). BPs are absent in the sister group to Varanus (Lanthanotus borneensis) and the other outgroup species (Heloderma spp.). Our phylogenetic reconstruction supports the KGP prediction that BP is restricted to large-bodied taxa. Using the Hansen model of adaptive evolution on a limited, but highly relevant morphological dataset (i.e. SVL; femur length, FL; tail length, TL), we demonstrated that these characters were not equivalent in their contribution to the evolution of BP in Varanus. SVL was significantly correlated with BP when modelled in a phylogenetic context, but the model identified random processes as dominant over adaptive evolution, suggesting that a body size threshold might be involved in the evolution of BP. A Brownian motion (BM) model outperformed the selection model in our analysis of relative TL, suggesting that TL and BP evolved independently. The selection model for relative FL outperformed the BM model, indicating that FL and BP share an adaptive history. Our non-phylogenetic analyses involving regression residuals of FL and TL vs. SVL showed no significant correlation between these characters and BP. We suggest that BP in Varanus provides a convergent or analogue model from which to investigate various forms of bipedalism in tetrapod vertebrates, especially other reptiles, such as theropod dinosaurs. Because BPstanding in varanids is possibly an incipient stage to some form of upright locomotion, its inclusion as a general model in evolutionary analyses of bipedalism of vertebrates will probably provide novel and important insights. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97 , 652–663.  相似文献   
166.
167.
The interest shown by ecologists in antioxidants and oxidative stress as potential modulators of life‐history trade‐offs has expanded greatly in recent years. However, we still know very little about natural variation in oxidative damage and antioxidant capacity in free‐living animals. In this study, we describe the natural variation in three components of oxidative balance in nestlings and breeding females in free‐living Great Tits Parus major and Common Starlings Sturnus vulgaris in central Italy, and relate these to breeding conditions and life‐history traits. Our results suggest that there are associations among oxidative physiology, reproductive activity, growth pattern and season in wild birds, but that the nature of these associations might be species‐specific rather than general across species.  相似文献   
168.
Giardia duodenalis is an intestinal parasite of many vertebrates. The presence of G. duodenalis in the marine environment due to anthropogenic and wildlife activity is well documented, including the contributions from untreated sewage and storm water, agricultural run-off and droppings from terrestrial animals. Recently, studies have detected this protistan parasite in the faeces of marine vertebrates such as whales, dolphins, seals and shore birds. To explore the population biology of G. duodenalis in marine life, we determined the prevalence of G. duodenalis in two species of seal (Halichoerus grypus, Phoca vitulina vitulina and Phoca vitulina richardsi) from the east and west coasts of the USA, sequenced two loci from G. duodenalis-positive samples to assess molecular diversity and examined G. duodenalis distribution amongst these seals and other marine vertebrates along the east coast. We found a significant difference in the presence of G. duodenalis between east and west coast seal species. Only the zoonotic lineages of G. duodenalis, Assemblages A and B and a novel lineage, which we designated as Assemblage H, were identified in marine vertebrates. Assemblages A and B are broadly distributed geographically and show a lack of host specificity. Only grey seal (Halichoerus grypus) samples and one gull sample (Larus argentatus) from a northern location of Cape Cod, Massachusetts, USA, showed the presence of Assemblage H haplotypes; only one other study of harbour seals from the Puget Sound region of Washington, USA previously recorded the presence of an Assemblage H haplotype. Assemblage H sequences form a monophyletic clade that appears as divergent from the other seven Assemblages of G. duodenalis as these assemblages are from each other. The discovery of a previously uncharacterised lineage of G. duodenalis suggests that this parasite has more genetic diversity and perhaps a larger host range than previously believed.  相似文献   
169.
Research on the diversity, evolution and stability of cooperative behaviour has generated a considerable body of work. As concepts simplify the real world, theoretical solutions are typically also simple. Real behaviour, in contrast, is often much more diverse. Such diversity, which is increasingly acknowledged to help in stabilizing cooperative outcomes, warrants detailed research about the proximate mechanisms underlying decision-making. Our aim here is to focus on the potential role of neuroendocrine mechanisms on the regulation of the expression of cooperative behaviour in vertebrates. We first provide a brief introduction into the neuroendocrine basis of social behaviour. We then evaluate how hormones may influence known cognitive modules that are involved in decision-making processes that may lead to cooperative behaviour. Based on this evaluation, we will discuss specific examples of how hormones may contribute to the variability of cooperative behaviour at three different levels: (i) within an individual; (ii) between individuals and (iii) between species. We hope that these ideas spur increased research on the behavioural endocrinology of cooperation.  相似文献   
170.
Vertebrate sex ratios are notorious for their lack of fit to theoretical models, both with respect to the direction and the magnitude of the sex ratio adjustment. The reasons for this are likely to be linked to simplifying assumptions regarding vertebrate life histories. More specifically, if the sex ratio adjustment itself influences offspring fitness, due to sex-specific interactions among offspring, this could affect optimal sex ratios. A review of the literature suggests that sex-specific sibling interactions in vertebrates result from three major causes: (i) sex asymmetries in competitive ability, for example due to sexual dimorphism, (ii) sex-specific cooperation or helping, and (iii) sex asymmetries in non-competitive interactions, for example steroid leakage between fetuses. Incorporating sex-specific sibling interactions into a sex ratio model shows that they will affect maternal sex ratio strategies and, under some conditions, can repress other selection pressures for sex ratio adjustment. Furthermore, sex-specific interactions could also explain patterns of within-brood sex ratio (e.g. in relation to laying order). Failure to take sex-specific sibling interactions into account could partly explain the lack of sex ratio adjustment in accordance with theoretical expectations in vertebrates, and differences among taxa in sex-specific sibling interactions generate predictions for comparative and experimental studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号