首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7076篇
  免费   433篇
  国内免费   487篇
  2024年   13篇
  2023年   119篇
  2022年   107篇
  2021年   172篇
  2020年   216篇
  2019年   245篇
  2018年   188篇
  2017年   192篇
  2016年   217篇
  2015年   268篇
  2014年   294篇
  2013年   407篇
  2012年   235篇
  2011年   294篇
  2010年   234篇
  2009年   388篇
  2008年   408篇
  2007年   402篇
  2006年   383篇
  2005年   302篇
  2004年   289篇
  2003年   314篇
  2002年   206篇
  2001年   175篇
  2000年   178篇
  1999年   151篇
  1998年   168篇
  1997年   163篇
  1996年   112篇
  1995年   109篇
  1994年   113篇
  1993年   118篇
  1992年   119篇
  1991年   86篇
  1990年   86篇
  1989年   75篇
  1988年   61篇
  1987年   51篇
  1986年   59篇
  1985年   68篇
  1984年   36篇
  1983年   23篇
  1982年   37篇
  1981年   35篇
  1980年   18篇
  1979年   16篇
  1978年   14篇
  1977年   9篇
  1976年   6篇
  1972年   7篇
排序方式: 共有7996条查询结果,搜索用时 93 毫秒
941.
942.
Organic acids reduce aluminum toxicity in maize root membranes   总被引:7,自引:0,他引:7  
Application of 10–50 μ M Al ions to a plasma membrane-enriched microsomal fraction, isolated from roots of maize ( Zea mays L.), resulted in decreased Mg2-ATPase activity. This was probably caused by changes in membrane structure as detected by the use of spin probes. Both enzymatic activity and membrane structure could in part be protected from Al injury when organic acids, similar to those found in maize root tissue, were administered prior to the metal. When stressed by application of Al ions, the Al-tolerant maize hybrid, W64, maintained higher concentrations of organic acids, especially malic and trans -aconitic, than the Al-sensitive maize hybrid, A632. We hypothesize that citric and malic acid, because of their high stability constants with Al and/or the acid's concentration reduce Al toxicity in maize root tissue, especially in the Al-tolerant line.  相似文献   
943.
Domesticated animals all over the world are subjected to a wide variety of environmental conditions and challenges. Any deviation from “normal”; may result in adaptive behavior of which changes in feed intake or feed intake pattern is by far the most important. Adaptive behavior may further include influences on passage rate of feed residues through the digestive tract, resulting in changes in digestibility. Adaptive behavior may also result in changes in heat production, either to maintain body temperature constant, or as a result of an elevated body temperature.

Important environmental challenges are infectious diseases. Mild (sub‐clinical) infections usually result in reduced performance, without affecting feed intake or digestibility. Severe infections may disrupt the barriers between the internal metabolism and the respiratory and/or digestive tract, resulting in severe losses of energy and protein. This situation is notably apparent in severe infections with parasites of the gastrointestinal tract and may be associated with severe protein losses. Feeding high protein diets may partly alleviate the negative effects.

Contamination of air, water and feed may occasionally cause problems in farm animals. Such contamination may include pathogenic microbes, toxic secondary fungal metabolites and heavy metals. Negative effects associated with such contamination often show an impaired reproductive efficiency, but their influence on the utilization of energy and nutrients is not well documented.  相似文献   
944.
Effects of acute exposure and acclimatisation to cold stress on respiratory functions were investigated in healthy tropical Indian men (n=10). Initial baseline recordings were carried out at Delhi and thereafter serially thrice at the arctic region and once on return to Delhi. For comparison the respiratory functions were also evaluated on Russian migrants (RM;n=7) and Russian natives (RN;n=6). The respiratory functions were evaluated using standard methodology on a Vitalograph: In Indians, there was an initial decrease in lung vital capacity (VC), forced vital capacity (FVC), forced expiratory volume 1st s (FEV1), peak expiratory flow rate (PEFR) and maximum voluntary ventilation (MVV) on acute exposure to cold stress, followed by gradual recovery during acclimatisation for 4 weeks and a further significant improvement after 9 weeks of stay at the arctic region. On return to India all the parameters reached near baseline values except for MVV which remained slightly elevated. RM and RN showed similar respiratory functions at the beginning of acute cold exposure at the arctic zone. RN showed an improvement after 10 weeks of stay whereas RM did not show much change. The respiratory responses during acute cold exposure are similar to those of initial altitude responses.  相似文献   
945.
We have isolated psychrotolerant bacteria from the leaf apoplast of cold-adapted wild plants and aimed to investigate their effect on the cold resistance of bean (Phaseolus vulgaris L.). Based on the findings of 16S rRNA gene sequence analysis, 20 isolates belonging to 5 bacteria species (Pseudomonas fragi, P. chloropaphis, P. fluorescens, P. proteolytica and Brevibacterium frigoritolerans) were identified in the leaf apoplastic fluid of Draba nemorosa, Galanthus gracilis, Colchicum speciousum, Scilla siberica, Erodium cicutarium, respectively. We have determined that 6 of the 20 isolates have exhibited ACC (1-aminocyclopropane-1-carboxylate) deaminase activity and secreted different extracellular proteins under cold condition (+4 °C) compared to normal growth condition (28 °C). The six isolates were then inoculated independently of each other to the leaves of 10-day-old bean seedlings growing under normal conditions (25/22 °C, 16/8 h photoperiod), and the inoculated and uninoculated (control) seedlings were transferred to cold (9/5 °C, 16/8 h photoperiod) for 3 days. The bacterial inoculations have decreased freezing injury, ice nucleating activity and lipid peroxidation content in parallel with the decrease of reactive oxygen species level such as O2.- and H2O2 in the inoculated seedlings compared to the control. In addition, the inoculations of the isolates have stimulated the activity of apoplastic antioxidant enzymes including superoxide dismutase, catalase, peroxidase, and glutathione reductase. The results show that the inoculations improve the cold resistance of bean seedlings and the psychrotolerant bacterial isolates can be evaluated within the group of plant growth promoting bacteria (PGPB) which can increase tolerance of cold-sensitive crops.  相似文献   
946.
947.
Theory suggests that spatial structuring should select for intermediate levels of virulence in parasites, but empirical tests are rare and have never been conducted with castration (sterilizing) parasites. To test this theory in a natural landscape, we construct a spatially explicit model of the symbiosis between the ant-plant Cordia nodosa and its two, protecting ant symbionts, Allomerus and Azteca . Allomerus is also a castration parasite, preventing fruiting to increase colony fecundity. Limiting the dispersal of Allomerus and host plant selects for intermediate castration virulence. Increasing the frequency of the mutualist, Azteca , selects for higher castration virulence in Allomerus , because seeds from Azteca -inhabited plants are a public good that Allomerus exploits. These results are consistent with field observations and, to our knowledge, provide the first empirical evidence supporting the hypothesis that spatial structure can reduce castration virulence and the first such evidence in a natural landscape for either mortality or castration virulence.  相似文献   
948.
SALT TOLERANCE IN THE HALOPHYTE SUAEDA MARITIMA (L.) DUM.   总被引:1,自引:0,他引:1  
  相似文献   
949.
Superoxide dismutases (SODs) are crucial in scavenging reactive oxygen species (ROS); however, studies regarding SOD functions in insects under cold conditions are rare. In this paper, two novel Cu/Zn-SOD genes in the desert beetle Microdera punctipennis, an extracellular copper/zinc SOD (MpecCu/Zn-SOD) and an intracellular copper/zinc SOD (MpicCu/Zn-SOD), were identified and characterized. The results of quantitative real-time PCR showed that MpecCu/Zn-SOD expression was significantly up-regulated by 4 °C exposure for 0.5 h, but MpicCu/Zn-SOD was not. Superoxide anion radical (O2-) content in beetles under 4 °C exposure for 0.5 h showed an initial sharp increase and fluctuated during the cold treatment period, which was consistent with the relative mRNA level of MpecCu/Zn-SOD. The total SOD activity in the beetle was negatively correlated to the O2- content with a correlation coefficient of −0.437. An E. coli system was employed to study the function of each MpCu/Zn-SOD gene. The fusion proteins Trx-His-MpCu/Zn-SODs were over expressed in E. coli BL21 using pET32a vector, and identified by SDS-PAGE and Western blotting. The transformed bacteria BL21(pET32a-MpecCu/Zn-SOD) and BL21(pET32a-MpicCu/Zn-SOD) showed increased cold tolerance to −4 °C as well as increased SOD activity compared to the control BL21(pET32a). The relative conductivity and malondialdehyde content in the two MpCu/Zn-SODs transformed bacteria under −4 °C were significantly lower than the control BL21(pET32a). Furthermore, BL21(pET32a-MpecCu/Zn-SOD) had significantly higher SOD activity and cold tolerance than BL21(pET32a-MpicCu/Zn-SOD) under −4 °C treatment, and had lower conductivity than BL21(pET32a-MpicCu/Zn-SOD). In conclusion, low temperature led to the accumulation of O2- in M. punctipennis, which stimulated the expression of extracellular MpCu/Zn-SOD gene and the increase of total SOD activity. E. coli overexpressing Trx-His-MpCu/Zn-SODs increased resistance to cold treatment-induced oxidative stress. Our findings will be helpful in further study of Cu/Zn-SOD genes in insect cold-tolerance.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号