首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2331篇
  免费   125篇
  国内免费   105篇
  2561篇
  2023年   21篇
  2022年   14篇
  2021年   32篇
  2020年   69篇
  2019年   44篇
  2018年   49篇
  2017年   43篇
  2016年   50篇
  2015年   64篇
  2014年   84篇
  2013年   96篇
  2012年   62篇
  2011年   85篇
  2010年   74篇
  2009年   116篇
  2008年   134篇
  2007年   119篇
  2006年   119篇
  2005年   88篇
  2004年   99篇
  2003年   100篇
  2002年   78篇
  2001年   70篇
  2000年   55篇
  1999年   68篇
  1998年   72篇
  1997年   71篇
  1996年   54篇
  1995年   59篇
  1994年   46篇
  1993年   46篇
  1992年   43篇
  1991年   39篇
  1990年   35篇
  1989年   27篇
  1988年   22篇
  1987年   17篇
  1986年   17篇
  1985年   22篇
  1984年   23篇
  1983年   14篇
  1982年   26篇
  1981年   20篇
  1980年   14篇
  1979年   17篇
  1978年   18篇
  1977年   9篇
  1976年   6篇
  1973年   2篇
  1972年   3篇
排序方式: 共有2561条查询结果,搜索用时 0 毫秒
981.
982.
983.
984.
Understanding the mechanisms by which aphids survive low temperature is fundamental in forecasting the risk of pest outbreaks. Aphids are chill susceptible and die at a temperature close to that at which a small exothermal event is produced. This event, which can be identified using differential scanning calorimetry (DSC), normally occurs at a higher temperature than the supercooling point (SCP) and has been termed a pre-freeze event (PFE). However, it is not known what causes the PFE or whether it signifies the death of the aphid. These questions are addressed here by using a sensitive DSC to quantify the PFE and SCP and to relate these thermal events to the lower lethal temperature (LT50) of sub-Antarctic aphids acclimated to low temperatures. PFEs were observed in each of the 3 species of aphids examined. They occurred over a narrower temperature range and at a higher temperature range than the SCP (−8.2 to −13.8 and −5.6 to −29.8 °C, respectively). Increased acclimation temperature resulted in increased SCPs in Myzus ascalonicus but not in Rhopalosiphum padi. The LT50 reduced by approximately 1 °C from −9.3 to −10.5 °C with reduced acclimation temperature (10–0 °C). The LT50 was close to the temperature at which the PFE occurred but statistically significantly higher than either the PFE or the SCP. In the majority of cases the PFE exotherm occurred well before the main exotherm produced by the bulk of the insect’s body water freezing (SCP). However, in a few cases it occurred at the same temperature or before the super-cooling point making the term, pre-freeze event (PFE), rather misleading. The possible origins of the PFE are discussed.  相似文献   
985.
Reptiles that live in cooler environments hibernate longer and, when active, limit daily activity times, allocate more time and energy toward thermoregulation, and consequently experience life-history constraints such as reduced fecundity and supra-annual reproductive cycles. This pattern becomes more extreme with increasing latitude and altitude. We compared the thermal biology of two populations of Liolaemus pictus argentinus living at two altitudes (771 and ∼1700 m asl). Environmental, microenvironmental, and operative temperatures were studied in order to describe the capture sites, sources of heat, and availability of microenvironments appropriate for thermoregulation. The body temperatures of L. p. argentinus at capture (Tb) and the preferred temperatures in the laboratory (Tp) were recorded and integrated with operative temperatures to calculate the effectiveness of thermoregulation. The high-altitude population was found to have a lower mean Tb (29 °C compared to 33 °C), while the Tp values for both populations were similar (36.7 °C). The analysis of operative temperatures and Tb in relation to Tp showed that L. p. argentinus behaves as a moderate thermoregulator at high altitude and as a poor thermoregulator at the low-altitude site probably due in part to the avoidance of predation risk.  相似文献   
986.
Considerable uncertainties remain about magnitude and character, if not general direction of anthropogenic climate change. Global mean temperature could increase by 1.5–4.5°C or more over historic levels, and extreme weather events—drought, storms, and flooding—are likely to increase greatly in frequency. Although ecologists and foresters agree that the practice of forestry will be transformed under climate change, these uncertainties compound the challenge of achieving sustainable, adaptive forest management. In this aritcle, we (i) present a multidisciplinary synthesis of current knowledge of responses of temperate and boreal tree species and forest communities to climate change, and (ii) outline silvicultural strategies for adapting temperate and boreal forests to confront climate change. Our knowledge synthesis proceeds through critical appraisals of efforts to model future tree distributions and responses to climate change, and reviews physiological, phenological, acclimation, and epigenetic responses to climate. As is the case of climate change itself, there are numerous uncertainties about tree species and provenance responses to climate change. For example, acclimation of respiration and epigenetic conditioning of seed embryos has the potential to buffer species against limited warming. Provenances within species also display idiosyncratic responses to altered climates, implying that soemm varieties will be more resilient or resistant to climate change than others. Genetically determined limits to climatic tolerance, and the limits of tree community resistance and resilience (speed of recovery from disturbance) in the face of climate-related disturbances are largely unknown. These unknowns require managers to adopt a portfolio of silvicultural strategies, which may range from minor modifications of current practices to design of novel multi-species stands that may have no historical analogue. Forest managers must be prepared to respond nimbly as they develop, incorporate new insights about climate change and species responses to warming into their practices. Marshalling all strategies and sources of knowledge should enable forest managers to mount (at least) a partially successful response to the challenges of climate change.  相似文献   
987.
张蒙  贾新成  陈明杰 《菌物学报》2000,19(4):580-582
对低温处理的草菇Volvariella volvacea菌丝体的可溶性蛋白进行分析,发现草菇菌丝在低温协迫中有新的可溶性蛋白产生,应用电泳技术分离纯化了草菇菌丝体中的一个低温诱导蛋白,经等电聚焦分析,该蛋白质的等电点6.79,SDS-聚丙烯酰胺凝胶电泳分析该蛋白质是由分子最为70kD和48kD的两条多肽所组成。  相似文献   
988.
The α-tubulin genes from two psychrophilic algae belonging to the genus Chloromonas (here named ANT1 and ANT3) have been isolated and sequenced. The genes ant1 and ant3 contain 4 and 2 introns, respectively. The coding DNA sequences are 90% identical but the degree of isology is very high at the polypeptide level (more than 97% strict identities). The ANT1 and ANT3 α-tubulin amino acid sequences were compared to the corresponding sequence of the mesophilic alga Chlamydomonas reinhardtii. Of the 15 substitutions detected in ANT1 and/or ANT3, 5 are common to both psychrophilic algae. The recorded substitutions have been analyzed in terms of cold adaptation on the basis of the available three-dimensional structure of the α,β-tubulin heterodimer from pig brain. Most of these are subtle changes, but two substitutions, M268V and A295V occurring in the region of interdimer contacts, could be of great significance for the cold stability of Antarctic algae microtubules due to the fact that the entropic control of microtubule assembly is particularly high in cold adaptes species. Received: December 24, 1998 / Accepted: April 2, 1999  相似文献   
989.
Received 4 January 1999/ Accepted in revised form 7 April 1999  相似文献   
990.
Plantlets of Solanum commersonii stem-culture were acclimated at 5°C day/night temperature for 14 days. Cold hardiness increased from – 3.5°C to – 8.6°C. During the course of acclimation, the synthesis of polypeptides was investigated and poly (A+) RNA was isolated. Translation products of poly(A+) RNA in a rabbit rcticulocyte lysate system were then analyzed. During the 14 days of acclimation, 23 cold-induced polypeptides were identified. Most of them disappeared following 1 day of de-acclimation at a 20/15°C day/night regime. The synthesis of one group of polypeptides is prominent and stable throughout the acclimation period. The other group is transient. The most prominent and stable polypeptides have molecular weights of 21, 22, 31 and 83 kDa.
Acclimation alters translatable mRNA population during the development of cold hardiness. Two mRNAs encoding in vitro translation products at 26 and 27 kDa were identified during the course of acclimation. These proteins may play important roles in the overall programming for the development of cold hardiness in tuber-bearing S. commersonii.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号