首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2332篇
  免费   125篇
  国内免费   104篇
  2023年   21篇
  2022年   14篇
  2021年   32篇
  2020年   69篇
  2019年   44篇
  2018年   49篇
  2017年   43篇
  2016年   50篇
  2015年   64篇
  2014年   84篇
  2013年   96篇
  2012年   62篇
  2011年   85篇
  2010年   74篇
  2009年   116篇
  2008年   134篇
  2007年   119篇
  2006年   119篇
  2005年   88篇
  2004年   99篇
  2003年   100篇
  2002年   78篇
  2001年   70篇
  2000年   55篇
  1999年   68篇
  1998年   72篇
  1997年   71篇
  1996年   54篇
  1995年   59篇
  1994年   46篇
  1993年   46篇
  1992年   43篇
  1991年   39篇
  1990年   35篇
  1989年   27篇
  1988年   22篇
  1987年   17篇
  1986年   17篇
  1985年   22篇
  1984年   23篇
  1983年   14篇
  1982年   26篇
  1981年   20篇
  1980年   14篇
  1979年   17篇
  1978年   18篇
  1977年   9篇
  1976年   6篇
  1973年   2篇
  1972年   3篇
排序方式: 共有2561条查询结果,搜索用时 31 毫秒
121.
哺乳动物在出生前后所经历的环境条件对其成年后的行为和生理等具有重要影响。环境温度是影响动物后代表型的重要因素之一。本研究将分娩当天的布氏田鼠母体和幼仔在常温(23℃±1℃)或低温(4℃±1℃)饲养,断乳(21日龄)时转至常温环境,至第63日龄时再随机将两组动物各分为常温组和低温暴露组,期间检测体重、摄食量、静止代谢率、认知能力和神经细胞增殖和存活等,以验证哺乳期的低温经历可影响成年动物的代谢生理、行为表型和相关脑区神经再生的假说。结果发现:哺乳期低温经历导致成年布氏田鼠摄食量显著降低,与代谢有关的下丘脑以及学习记忆有关的海马区细胞增殖和存活数量减少。当动物在成年期面临冷暴露时,与哺乳期常温经历的动物相比,哺乳期低温经历的动物摄食量较低,在Y迷宫新异臂中的穿梭次数和停留时间显著降低,但海马和下丘脑部分核团的细 胞增殖以及海马CA的细胞存活明显升高。这表明哺乳期低温经历对布氏田鼠的能量代谢、行为和相关脑区的成体神经再生产生了持久的抑制效应,但成年后再次面对低温时,动物的代谢能力和代谢及学习记忆相关脑区的神经细胞可塑性优于哺乳期未曾经历低温的动物。  相似文献   
122.
In the environment, bacteria can be exposed to the concentration gradient of toxic heavy metals (gradual) or sudden high concentration of them (acute). In both situations, bacteria get acclimated to toxic heavy metal concentrations. Acclimation causes metabolic and molecular changes in bacteria. In this study, we aimed to understand whether there are differences between molecular profiles of the bacteria (Brevundimonas, Gordonia and Microbacterium) which are under acute or gradual exposure to cadmium or lead by using ATR‐FTIR spectroscopy. Our results revealed the differences between the acclimation groups in membrane dynamics including changes in the structure and composition of the membrane lipids and proteins. Furthermore, protein concentrations decreased in acclimated bacterial groups. Also, a remarkable increase in exopolymer production occurred in acclimated groups. Interestingly, bacteria under acute cadmium exposure produced the significantly higher amount of exopolymer than they did under gradual exposure. On the contrary, under lead exposure gradually acclimate strains produced significantly higher amounts of exopolymer than those of acutely acclimated ones. This information can be used in bioremediation studies to obtain bacterial strains producing a higher amount of exopolymer.   相似文献   
123.
It has now been firmly established that, not only ischemia/reperfusion, but also cold itself causes damage during kidney transplantation. Iron chelators or anti-oxidants applied during the cold plus rewarming phase are able to prevent this damage. At present, it is unknown if these measures act only during the cold, or whether application during the rewarming phase also prevents damage. We aimed to study this after cold normoxic and hypoxic conditions. LLC-PK1 cells were incubated at 4 degrees C in Krebs-Henseleit buffer for 6 or 24h, followed by 18 or 6h rewarming, respectively. Cold preservation was performed under both normoxic (95% air/5% CO2) and hypoxic (95% N2/5% CO2) conditions. The iron chelator 2,2'-DPD (100 microM), anti-oxidants BHT (20 microM) or sibilinin (200 microM), and xanthine oxidase inhibitor allopurinol (100 microM) were added during either cold preservation plus rewarming, or rewarming alone. Cell damage was assessed by LDH release (n=3-9). Addition of 2,2'-DPD and BHT during cold hypoxia plus rewarming did, but during rewarming alone did not prevent cell damage. When added during rewarming after 6h cold normoxic incubation, BHT and 2,2'-DPD inhibited rewarming injury compared to control (p<0.05). Allopurinol did not prevent cell damage in any experimental set-up. Our data show that application of iron chelators or anti-oxidants during the rewarming phase protects cells after normoxic but not hypoxic incubation. Allopurinol had no effect. Since kidneys are hypoxic during transplantation, measures aimed at preventing cold-induced and rewarming injury should be taken during the cold.  相似文献   
124.
Global temperature has been Increased by 0.6 ℃ over the past century and is predicted to Increase by 1.4-5.8 ℃ by the end of this century. It is unclear what impacts global warming will have on tallgrass species. In the present study, we examined leaf net photosynthetic rate (P.) and leaf respiration rate in darkness (Rd) of Aster erlcoldes (L.) Nesom, Ambrosia psllostachya DC., Helianthus mollis Lam., and Sorghastrum nutans (L.) Nash In response to experimental warming in a tallgrass prairie ecosystem of the Great Plains, USA, in the autumn (fall) of 2000 and through 2001. Warming has been Implemented with infrared heaters since 21 November 1999. The P. increased significantly In spring, decreased in early fall, and did not change in summer and late fall in the four species under warming compared with control. The Rd of the four species increased significantly until mid-summer and then did not change under warming. Measured temperature-response curves of P. showed that warming Increased the optimum temperature of P. (Topt) by 2.32 and 4.59 ℃ for H. mollis and S. nutans, respectively, in August, whereas there were no changes in May and September, and A. ericoldes and A. psllostachya also showed no changes in any of the 3 months. However, P. at optimum temperature (Popt) showed downregulation in September and no regulation in May and August for all four species. The temperature-response curves of Rd Illustrate that the temperature sensitivity of Rd, Q10, was lower in the warmed plots compared with the control plots, except for A. ericoides in August, whereas there were no changes In May and September for all four species. The results of the present study indicate that photosynthetic and respiratory acclimation varies with species and among seasons, occurring In the mid-growing season and not in the early and late growing seasons.  相似文献   
125.
《Journal of Asia》2022,25(1):101862
Spodoptera frugiperda is a highly invasive pest species that recently invaded Africa and Asia causing severe economic losses, primarily related to corn and rice crops. Temperature is one of the most important environmental factors that influence the invasion of pests into new habitats. However, little is known regarding the thermal tolerance characteristics of invasive S. frugiperda. Thus, we investigated the response of four developmental stages of S. frugiperda (i.e., eggs, third and sixth instar larvae, and pupae) to cold acclimation (CA) and rapid cold-hardening (RCH). All individuals suffered high mortality with 24-h temperature treatments at <?5°C and >35 °C. The CA treatment significantly increased the survival rate of the eggs and third instar larvae, although it did not affect the sixth instar larvae and it decreased the pupation rate. The RCH treatment at 5 °C for 5 h or 2 °C for 2 h increased the cold tolerance capabilities of the third and sixth instar larvae, respectively. Thus, the larval stage appears to be crucial for the cold tolerance of S. frugiperda. Our findings improve the current understanding of the cold tolerance characteristics of S. frugiperda and indicate its potential for survival in the newly invaded temperate regions of Asia.  相似文献   
126.
127.
This study aimed to investigate whether exogenous application of carnitine stimulates transportation of fatty acids into mitochondria, which is an important part of fatty acid trafficking in cells, and mitochondrial respiration in the leaves of maize seedlings grown under normal and cold conditions. Cold stress led to significant increases in lipase activity, which is responsible for the breakdown of triacylglycerols, and carnitine acyltransferase (carnitine acyltransferase I and II) activities, which are responsible for the transport of activated long-chain fatty acids into mitochondria. While exogenous application of carnitine has a similar promoting effect with cold stress on lipase activity, it resulted in further increases in the activity of carnitine acyltransferases compared to cold stress. The highest activity levels for these enzymes were recorded in the seedlings treated with cold plus carnitine. In addition, these increases were correlated with positive increases in the contents of free- and long-chain acylcarnitines (decanoyl-l-carnitine, lauroyl-l-carnitine, myristoyl-l-carnitine, and stearoyl-l-carnitine), and with decreases in the total lipid content. The highest values for free- and long-chain acylcarnitines and the lowest value for total lipid content were recorded in the seedlings treated with cold plus carnitine. On the other hand, carnitine with and without cold stress significantly upregulated the expression level of citrate synthase, which is responsible for catalysing the first reaction of the citric acid cycle, and cytochrome oxidase, which is the membrane-bound terminal enzyme in the electron transfer chain, as well as lipase. All these results revealed that on the one hand, carnitine enhanced transport of fatty acids into mitochondria by increasing the activities of lipase and carnitine acyltransferases, and, on the other hand, stimulated mitochondrial respiration in the leaves of maize seedlings grown under normal and cold conditions.  相似文献   
128.
129.
This study was carried out to evaluate the effects of dietary lipid sources on growth performance, fatty acids composition and cold tolerance of Nile tilapia (Oreochromis niloticus) fingerlings (7.00 ± 0.50 g/fish). The fish were fed four isonitrogenous (28% crude protein), isocaloric (500 kcal/100 g) diets containing four lipid sources; fish oil (FO), corn oil (CO), coconut oil (COCO) or fish oil/ corn oil mixture (1:1 ratio) (oil mix). The diets were offered to the fish at a daily rate of 3% of their body weights (BW), twice a day for two months. After the feeding trial, the fish were exposed to decreasing water temperature from 25 °C until the appearance of death symptoms. The results revealed that FO-based diets (FO and oil mix) produced the best growth rates and feed efficiency, followed by corn oil diet, while COCO resulted in the lowest performance. Fish fed on CO and oil mix showed higher body unsaturated fatty acids (UFA) and lower lethal temperature than those fed on FO- or COCO-based diets. These results indicate that cold shock can modify the lipid metabolism in Nile tilapia by lowering total body saturated fatty acids and raising n-6 and n-3 UFA. This finding suggests that the inclusion of high levels of plant oils in Nile tilapia feeds can enhance their cold tolerance.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号