首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2332篇
  免费   125篇
  国内免费   104篇
  2023年   21篇
  2022年   14篇
  2021年   32篇
  2020年   69篇
  2019年   44篇
  2018年   49篇
  2017年   43篇
  2016年   50篇
  2015年   64篇
  2014年   84篇
  2013年   96篇
  2012年   62篇
  2011年   85篇
  2010年   74篇
  2009年   116篇
  2008年   134篇
  2007年   119篇
  2006年   119篇
  2005年   88篇
  2004年   99篇
  2003年   100篇
  2002年   78篇
  2001年   70篇
  2000年   55篇
  1999年   68篇
  1998年   72篇
  1997年   71篇
  1996年   54篇
  1995年   59篇
  1994年   46篇
  1993年   46篇
  1992年   43篇
  1991年   39篇
  1990年   35篇
  1989年   27篇
  1988年   22篇
  1987年   17篇
  1986年   17篇
  1985年   22篇
  1984年   23篇
  1983年   14篇
  1982年   26篇
  1981年   20篇
  1980年   14篇
  1979年   17篇
  1978年   18篇
  1977年   9篇
  1976年   6篇
  1973年   2篇
  1972年   3篇
排序方式: 共有2561条查询结果,搜索用时 15 毫秒
111.
To investigate the responses of castor bean to repeated drying–wetting cycles (RDWC), morpho-physiological parameters of two cultivars (Jiaxiang 2 and Hangbi 8) were determined by a pot experiment under well-watered control and RDWC. RDWC inhibited plant growth and leaf development, decreased water loss rate (WLR), and enhanced leaf mass per area (LMA) and chlorophyll content as indicated by spectral reflectance indices for both cultivars. Photosynthesis was inhibited by progressive drought stress but quickly recovered after rewatering for each cycle. Both cultivars exhibit a similar pattern of acclimation to RDWC: (1) higher LMA and lower WLR, (2) increased photosynthetic capacity under drought stress with increasing cycle numbers, (3) quick recovery and over-compensation for photosynthesis after rewatering, and (4) increased chlorophyll content. Jiaxiang 2 shows a high capacity for water preservation under drought stress and an over-compensation for photosynthesis after rewatering compared with Hangbi 8.  相似文献   
112.
对419份广西水稻地方品种初级核心种质进行芽期、苗期的耐冷性鉴定及相关分析,结果表明:广西水稻地方品种芽期、苗期耐冷性主要集中在7级和9级,总体耐冷性较弱。芽期、苗期极强耐冷种质(1级)分别为24份和27份,占参试总数的5.73%和6.44%,其中10份种质芽期和苗期均表现极强耐冷(1级)。芽期、苗期耐冷性呈极显著正相关(r=0.66)。粳稻芽期、苗期耐冷性均显著高于籼稻;粘糯稻之间耐冷性差异是由籼粳稻类型的耐冷差异引起的;来自高寒山区稻作区的品种芽期和苗期平均耐冷表现最强。利用34个SSR标记与芽期、苗期耐冷性进行Pearson相关分析,在第7和第9染色体上,各鉴定出1个同时与芽期和苗期耐冷性相关联的位点。本研究为水稻芽期、苗期耐冷育种提供新的抗源材料,并为水稻耐冷基因定位及机理研究奠定基础。  相似文献   
113.
The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high‐value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark‐grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L?1 day?1) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark‐grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high‐light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L?1 day?1 by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark‐grown cells under photo‐induction conditions. Biotechnol. Bioeng. 2016;113: 2088–2099. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
  相似文献   
114.
115.
The gills of euryhaline fish are the ultimate ionoregulatory tissue, achieving ion homeostasis despite rapid and significant changes in external salinity. Cellular handling of sodium is not only critical for salt and water balance but is also directly linked to other essential functions such as acid–base homeostasis and nitrogen excretion. However, although measurement of intracellular sodium ([Na+]i) is important for an understanding of gill transport function, it is challenging and subject to methodological artifacts. Using gill filaments from a model euryhaline fish, inanga (Galaxias maculatus), the suitability of the fluorescent dye CoroNa Green as a probe for measuring [Na+]i in intact ionocytes was confirmed via confocal microscopy. Cell viability was verified, optimal dye loading parameters were determined, and the dye–ion dissociation constant was measured. Application of the technique to freshwater- and 100% seawater-acclimated inanga showed salinity-dependent changes in branchial [Na+]i, whereas no significant differences in branchial [Na+]i were determined in 50% seawater-acclimated fish. This technique facilitates the examination of real-time changes in gill [Na+]i in response to environmental factors and may offer significant insight into key homeostatic functions associated with the fish gill and the principles of sodium ion transport in other tissues and organisms.  相似文献   
116.
Environmentally inducible phenotypic plasticity is a major player in plant responses to climate change. However, metabolic responses and their role in determining the phenotypic plasticity of plants that are subjected to temperature variations remain poorly understood. The metabolomic profiles and metabolite levels in the leaves of three maize inbred lines grown in different temperature conditions were examined with a nuclear magnetic resonance metabolomic technique. The relationship of functional traits to metabolome profiles and the metabolic mechanism underlying temperature variations were then explored. A comparative analysis showed that during heat and cold stress, maize plants shared common plastic responses in biomass accumulation, carbon, nitrogen, sugars, some amino acids and compatible solutes. We also found that the plastic response of maize plants to heat stress was different from that under cold stress, mainly involving biomass allocation, shikimate and its aromatic amino acid derivatives, and other non‐polar metabolites. The plastic responsiveness of functional traits of maize lines to temperature variations was low, while the metabolic responsiveness in plasticity was high, indicating that functional and metabolic plasticity may play different roles in maize plant adaptation to temperature variations. A linear regression analysis revealed that the maize lines could adapt to growth temperature variations through the interrelation of plastic responses in the metabolomes and functional traits, such as biomass allocation and the status of carbon and nitrogen. We provide valuable insight into the plastic response strategy of maize plants to temperature variations that will permit the optimisation of crop cultivation in an increasingly variable environment.  相似文献   
117.
We examined changes on N-methyl-d-aspartate receptors (NRs) in different growth stages (early parr, parr, and early smolt) of chum salmon, Oncorhynchus keta, during parr-smolt transformation from freshwater to seawater. Expression levels of NR genes mRNA and concentration of cortisol, T3, T4, dopamine and Na+/K+-ATPase activity significantly increased at salinity change condition. Moreover, in cultured brain cells, NRs were significantly lower in all groups treated with MK-801 (an antagonist of NRs) than in the early parr stage group in the FW treatment. We confirmed that the reduction in mRNA expression levels of NRs increased from the early parr to the early smolt stage. The information reported here should be taken into account in future studies on the relationship between memory factors of natal streams and homing mechanisms in Salmonidae.  相似文献   
118.
Changes in labile carbon (LC) pools and microbial communities are the primary factors controlling soil heterotrophic respiration (Rh) in warming experiments. Warming is expected to initially increase Rh but studies show this increase may not be continuous or sustained. Specifically, LC and soil microbiome have been shown to contribute to the effect of extended warming on Rh. However, their relative contribution is unclear and this gap in knowledge causes considerable uncertainty in the prediction of carbon cycle feedbacks to climate change. In this study, we used a two‐step incubation approach to reveal the relative contribution of LC limitation and soil microbial community responses in attenuating the effect that extended warming has on Rh. Soil samples from three Tibetan ecosystems—an alpine meadow (AM), alpine steppe (AS), and desert steppe (DS)—were exposed to a temperature gradient of 5–25°C. After an initial incubation period, soils were processed in one of two methods: (a) soils were sterilized then inoculated with parent soil microbes to assess the LC limitation effects, while controlling for microbial community responses; or (b) soil microbes from the incubations were used to inoculate sterilized parent soils to assess the microbial community effects, while controlling for LC limitation. We found both LC limitation and microbial community responses led to significant declines in Rh by 37% and 30%, respectively, but their relative contributions were ecosystem specific. LC limitation alone caused a greater Rh decrease for DS soils than AMs or ASs. Our study demonstrates that soil carbon loss due to Rh in Tibetan alpine soils—especially in copiotrophic soils—will be weakened by microbial community responses under short‐term warming.  相似文献   
119.
120.
Theory predicts that resource variability hinders consumer performance. How this effect depends on the temporal structure of resource fluctuations encountered by individuals remains poorly understood. Combining modelling and growth experiments with Daphnia magna, we decompose the complexity of resource fluctuations and test the effect of resource variance, supply peak timing (i.e. phase) and co‐limiting resource covariance along a gradient from high to low frequencies reflecting fine‐ to coarse‐grained environments. Our results show that resource storage can buffer growth at high frequencies, but yields a sensitivity of growth to resource peak timing at lower ones. When two resources covary, negative covariance causes stronger growth depression at low frequencies. However, negative covariance might be beneficial at intermediate frequencies, an effect that can be explained by digestive acclimation. Our study provides a mechanistic basis for understanding how alterations of the environmental grain size affect consumers experiencing variable nutritional quality in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号