首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7449篇
  免费   471篇
  国内免费   278篇
  8198篇
  2024年   4篇
  2023年   100篇
  2022年   165篇
  2021年   203篇
  2020年   167篇
  2019年   191篇
  2018年   290篇
  2017年   148篇
  2016年   153篇
  2015年   185篇
  2014年   517篇
  2013年   533篇
  2012年   309篇
  2011年   442篇
  2010年   489篇
  2009年   551篇
  2008年   555篇
  2007年   554篇
  2006年   494篇
  2005年   415篇
  2004年   340篇
  2003年   309篇
  2002年   269篇
  2001年   132篇
  2000年   115篇
  1999年   97篇
  1998年   117篇
  1997年   72篇
  1996年   44篇
  1995年   52篇
  1994年   48篇
  1993年   36篇
  1992年   25篇
  1991年   9篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   6篇
  1982年   7篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有8198条查询结果,搜索用时 15 毫秒
71.
72.
The crystal structure of the Bacillus subtilis YkoF gene product, a protein involved in the hydroxymethyl pyrimidine (HMP) salvage pathway, was solved by the multiwavelength anomalous dispersion (MAD) method and refined with data extending to 1.65 A resolution. The atomic model of the protein shows a homodimeric association of two polypeptide chains, each containing an internal repeat of a ferredoxin-like betaalphabetabetaalphabeta fold, as seen in the ACT and RAM-domains. Each repeat shows a remarkable similarity to two members of the COG0011 domain family, the MTH1187 and YBL001c proteins, the crystal structures of which were recently solved by the Northeast Structural Genomics Consortium. Two YkoF monomers form a tightly associated dimer, in which the amino acid residues forming the interface are conserved among family members. A putative small-ligand binding site was located within each repeat in a position analogous to the serine-binding site of the ACT-domain of the Escherichia coli phosphoglycerate dehydrogenase. Genetic data suggested that this could be a thiamin or HMP-binding site. Calorimetric data confirmed that YkoF binds two thiamin molecules with varying affinities and a thiamine-YkoF complex was obtained by co-crystallization. The atomic model of the complex was refined using data to 2.3 A resolution and revealed a unique H-bonding pattern that constitutes the molecular basis of specificity for the HMP moiety of thiamin.  相似文献   
73.
The putative linker histone in Saccharomyces cerevisiae, Hho1p, has two regions of sequence (GI and GII) that are homologous to the single globular domains of linker histones H1 and H5 in higher eukaryotes. However, the two Hho1p "domains" differ with respect to the conservation of basic residues corresponding to the two putative DNA-binding sites (sites I and II) on opposite faces of the H5 globular domain. We find that GI can protect chromatosome-length DNA, like the globular domains of H1 and H5 (GH1 and GH5), but GII does not protect. However, GII, like GH1 and GH5, binds preferentially (and with higher affinity than GI) to four-way DNA junctions in the presence of excess linear DNA competitor, and binds more tightly than GI to linker-histone-depleted chromatin. Surprisingly, in 10 mM sodium phosphate (pH 7.0), GII is largely unfolded, whereas GI, like GH1 and GH5, is structured, with a high alpha-helical content. However, in the presence of high concentrations of large tetrahedral anions (phosphate, sulphate, perchlorate) GII is also folded; the anions presumably mimic DNA in screening the positive charge. This raises the possibility that chromatin-bound Hho1p may be bifunctional, with two folded nucleosome-binding domains.  相似文献   
74.
75.
Nucleotide‐Binding Oligomerization Domain 2 (NOD2) has been reported to be a candidate gene for Mycobacterium avium subsp. paratuberculosis (MAP) infection in a Bos taurus × Bos indicus mixed breed based on a genetic association with the c.2197T>C single nucleotide polymorphism (SNP). Nevertheless, this SNP has also been reported to be monomorphic in the B. taurus species. In the present work, 18 SNPs spanning the bovine NOD2 gene have been analysed in a genetic association study of two independent populations of Holstein‐Friesian cattle. We found that the C allele of SNP c.*1908C>T, located in the 3′‐UTR region of the gene, is significantly more frequent in infected animals than in healthy ones, which supports the idea that the bovine NOD2 gene plays a role in susceptibility to MAP infection. However, in silico analyses of the NOD2 nucleotide sequence did not yield definitive data about a possible direct effect of SNP c.*1908C>T on susceptibility to infection and led us to consider its linkage disequilibrium with the causative variant. A more exhaustive genetic association study including all putative, functional SNPs from this gene and subsequent functional analyses needs to be conducted to achieve a more complete understanding of how different variants of NOD2 may affect susceptibility to MAP infection in cattle.  相似文献   
76.
77.
用PCR的方法克隆出了编码蓝细菌Synechococcussp.PCC7002FNR中FNR区的基因petHL,克隆到达载体pET3a上,转化大肠杆菌BL21(DE3)后实现了大量表达。重组FNR区(rFNRD)经DEAESephdexA50离子交换层析及SephadexG100凝胶层析得到大量的电泳均一的rFNRD。N末端氨基酸序列分析表明,表达产物确为petHL所编码。且起始Met翻译后未被除去。rFNRD与rFNR的吸收光谱相同,其黄递酶活性的最适pH和最适温度也相同。rFNRD能在体外催化电子从P700到NADP+的传递  相似文献   
78.
Xylanase A of Thermotoga neapolitana contains binding domains both at the N- and C-terminal ends of the catalytic domain. In the N-terminal position it contains two carbohydrate-binding modules (CBM) which belong to family 22. These CBMs bind xylan but not to cellulose. The gene encoding the mature peptide of these CBMs was fused with an alkaline active GH10 xylanase from Bacillus halodurans S7 and expressed in Escherichia coli. The (His)6 tagged hybrid protein was purified by immobilized metal affinity chromatography and characterized. Xylan binding by the chimeric protein was influenced by NaCl concentration and pH of the binding medium. Binding increased with increasing salt concentration up to 200 mM. Higher extent of binding was observed under acidic conditions. The fusion of the CBM structures enhanced the hydrolytic efficiency of the xylanase against insoluble xylan, but decreased the stability of the enzyme. The optimum temperature and pH for the activity of the xylanase did not change.  相似文献   
79.
Deletion of the transmembrane domain (TM-domain) of Archaeoglobus fulgidus LonB protease (Archaeoglobus fulgidus (AfLon)) was shown to result in uncontrollable activation of the enzyme proteolytic site and in vivo autolysis yielding a stable and functionally inactive fragment consisting of both α-helical and proteolytic domains (αP). The ΔTM-AfLon-S509A enzyme form, obtained by site-directed mutagenesis of the catalytic Ser residue, is capable of recombination with the αP fragment. The mixed oligomers were shown to be proteolytically active, which indicates a crucial role of subunit interactions in the activation of the AfLon proteolytic site. The thermophilic nature of AfLon protease was found to be due to the special features of the enzyme activity regulation, the structure of ATPase domain, and the quaternary structure.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号