首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1535篇
  免费   53篇
  国内免费   22篇
  2023年   18篇
  2022年   14篇
  2021年   35篇
  2020年   33篇
  2019年   50篇
  2018年   39篇
  2017年   25篇
  2016年   31篇
  2015年   53篇
  2014年   63篇
  2013年   77篇
  2012年   33篇
  2011年   43篇
  2010年   41篇
  2009年   48篇
  2008年   47篇
  2007年   55篇
  2006年   56篇
  2005年   56篇
  2004年   45篇
  2003年   51篇
  2002年   41篇
  2001年   27篇
  2000年   27篇
  1999年   23篇
  1998年   33篇
  1997年   31篇
  1996年   26篇
  1995年   20篇
  1994年   26篇
  1993年   20篇
  1992年   28篇
  1991年   27篇
  1990年   21篇
  1989年   22篇
  1988年   31篇
  1987年   16篇
  1986年   14篇
  1985年   31篇
  1984年   38篇
  1983年   10篇
  1982年   29篇
  1981年   18篇
  1980年   21篇
  1979年   18篇
  1978年   19篇
  1977年   21篇
  1976年   15篇
  1973年   10篇
  1971年   9篇
排序方式: 共有1610条查询结果,搜索用时 296 毫秒
121.
122.
The olfactory epithelium (OE) is derived from the olfactory placode (OP) during mouse development. At embryonic day (E) 10.0-E10.5, “early neurogenesis” occurs in the OE, which includes production of pioneer neurons that emigrate out of the OE and other early-differentiated neurons. Around E12.5, the OE becomes organized into mature pseudostratified epithelium and shows “established neurogenesis,” in which olfactory receptor neurons (ORNs) are differentiated from basal progenitors. Little is known about the molecular pathway of early neurogenesis. The homeodomain protein Six1 is expressed in all OP cells and neurogenic precursors in the OE. Here we show that early neurogenesis is severely disturbed despite the unaltered expression of Mash1 at E10.5 in the Six1-deficient mice (Six1−/−). Expression levels of neurogenin1 (Ngn1) and NeuroD are reduced and those of Hes1 and Hes5 are augmented in the OE of Six1/− at E10.5. Pioneer neurons and cellular aggregates, which are derived from the OP/OE and situated in the mesenchyme between the OE and forebrain, are completely absent in Six1−/−. Moreover, ORN axons and the gonadotropin-releasing hormone-positive neurons fail to extend and migrate to the forebrain, respectively. Our study indicates that Six1 plays critical roles in early neurogenesis by regulating Ngn1, NeuroD, Hes1, and Hes5.  相似文献   
123.
Park SE  Song JD  Kim KM  Park YM  Kim ND  Yoo YH  Park YC 《FEBS letters》2007,581(2):180-186
The diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the apoptosis of human RPE cells. DPI treatment in ARPE-19 cells evoked a dose- and time-dependent growth inhibition, and also induced DNA fragmentation and protein content of the proapoptotic factor Bax. In addition, DPI significantly induced the expression and phosphorylation of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest. ROS have been implicated as a key factor in the activation of p53 by many chemotherapeutic drugs. Recent data on the regulation of intracellular ROS by DPI are controversial. Therefore, we analyzed whether DPI could contribute to the generation of intracellular ROS. Although there was increase in ROS level from cells treated for 24h with DPI, it was not detectable at early time points, required to induce p53 expression. And DPI-induced p53 expression was not affected by the ROS scavenger NAC. We conclude that DPI induces the expression of p53 by ROS-independent mechanism in ARPE-19 cells, and renders cells sensitive to drug-induced apoptosis by induction of p53 expression.  相似文献   
124.
The insulin-like growth factor type 1 receptor (IGF-1R) is part of the receptor tyrosine kinase superfamily. The activation of IGF-1R regulates several key signaling pathways responsible for maintaining cellular homeostasis, including survival, growth, and proliferation. In addition to mediating signal transduction at the plasma membrane, in serum-based models, IGF-1R undergoes SUMOylation by SUMO 1 and translocates to the nucleus in response to IGF-1. In corneal epithelial cells grown in serum-free culture, however, IGF-1R has been shown to accumulate in the nucleus independent of IGF-1. In this study, we report that the insulin-like growth factor binding protein-3 (IGFBP-3) mediates nuclear translocation of IGF-1R in response to growth factor withdrawal. This occurs via SUMOylation by SUMO 2/3. Further, IGF-1R and IGFBP-3 undergo reciprocal regulation independent of PI3k/Akt signaling. Thus, under healthy growth conditions, IGFBP-3 functions as a gatekeeper to arrest the cell cycle in G0/G1, but does not alter mitochondrial respiration in cultured cells. When stressed, IGFBP-3 functions as a caretaker to maintain levels of IGF-1R in the nucleus. These results demonstrate mutual regulation between IGF-1R and IGFBP-3 to maintain cell survival under stress. This is the first study to show a direct relationship between IGF-1R and IGFBP-3 in the maintenance of corneal epithelial homeostasis.  相似文献   
125.
126.
反刍动物瘤胃中栖息着丰富多样的微生物,其在瘤胃内氨生成过程中发挥了重要的作用。微生物介导的氨基酸脱氨基作用和非蛋白氮水解作用是瘤胃内氨生成的主要途径。微生物介导了瘤胃内氨的生成,同时瘤胃内产生的氨也会反馈影响微生物菌群结构及瘤胃上皮功能,进而影响瘤胃发酵及宿主健康。本文主要综述了瘤胃微生物在介导氨生成中的作用和氨对瘤胃消化及瘤胃上皮功能的影响,以期对后续研究有所启发。  相似文献   
127.
128.
We have studied the gill epithelium of Oreochromis niloticus using transmission electron microscopy with the particular interested relationship between cell morphology and osmotic, immunoregulatory, or other non‐regulatory functions of the gill. Pavement cells covered the filament epithelium and lamellae of gills, with filament pavement cells showing distinct features from lamellar pavement cells. The superficial layer of the filament epithelium was formed by osmoregulatory elements, the columnar mitochondria‐rich, mucous and support cells, as well as by their precursors. Light mitochondria‐rich cells were located next to lamellae. They exhibited an apical crypt with microvilli and horizontal small dense rod‐like vesicles, sealed by tight junctions to pavement cells. Dark mitochondria‐rich cells had long dense rod‐like vesicles and a small apical opening sealed by tight junctions to pavement cells. The deep layer of the filament epithelium was formed by a network of undifferentiated cells, containing neuroepithelial and myoepithelial cells, macrophage and eosinophil‐like cells and their precursors, as well as precursors of mucous cells. The lateral‐basal surface was coated by myoepithelial cells and a basal lamina. The lamellar blood lacunae was lined by pillar cells and surrounded by a basal lamina and pericytes. The data presented here support the existence of two distinct types of pavement cells, mitochondria‐rich cells, and mitochondria‐rich cells precursors, a structural role for support cells, a common origin for pavement cells and support cells, a paracrine function for neuroepithelial cells in the superficial layer, and the control of the lamellar capillary base by endocrine and contractile cells. Data further suggest that the filament superficial layer is involved in gill osmoregulation, that may interact, through pale mitochondria‐rich cells, with the deep layer and lamellae, whereas the deep layer, through immune and neuroendocrine systems, acts in the regeneration and defense of the tissue. J. Morphol. 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
129.
The unidirectional transport and metabolism of 14C-labeled acetate, propionate and butyrate across the isolated bovine rumen epithelium was measured in vitro by the Ussing chamber technique. There was a significant, but relatively small, net secretion of acetate and propionate, and a large and significant net absorption of butyrate. The results demonstrate that the mucosal-serosal (MS) pathway for short-chain fatty acids (SCFA) is different from the serosal-mucosal (SM) pathway, and that butyrate is treated differently from acetate and propionate by the epithelium. The results support that the main route for epithelial SCFA transport is transcellular. The correlation between SCFA lipophility and the flux rate was positive but weak at both pH 7.3 and 6.0. Decreasing pH increased all SCFA fluxes significantly, but not proportionally to the increase of protonized SCFA in the bathing solution. There was a significant and apparently non-competitive interaction between the transport of acetate, propionate and butyrate. It seems that mediated transport mechanisms must be involved in epithelial SCFA transport in the bovine rumen, but the data do not exclude that passive diffusion could account for a significant part of the flux. The metabolism of SCFA in the Ussing chamber system was considerable, and there was a clear preference for excretion of CO2 from this metabolism to the mucosal side, while side preference for non-CO2 metabolite excretion was not studied. Of the propionate and butyrate transported in the MS direction, 78 and 95% was metabolised, while only 37 and 38% was metabolised in the SM direction (acetate metabolism could not be measured). There was, however, no simple relation between the degree of metabolism and the transport rate or the transport asymmetry of the SCFA.  相似文献   
130.
Urothelial surface is covered by numerous plaques (consisting of asymmetric unit membranes or AUM) that are interconnected by ordinary looking hinge membranes. We describe an improved method for purifying bovine urothelial plaques using 2% sarkosyl and 25 mM NaOH to remove contaminating membrane and peripheral proteins selectively. Highly purified plaques interconnected by intact hinge areas were obtained, indicating that the hinges are as detergent-insoluble as the plaques. These plaque/hinge preparations contained uroplakins, an as yet uncharacterized 18-kDa plaque-associated protein, plus an 85-kDa glycoprotein that is known to be hinge-associated in situ. Examination of the isolated, in vitro-resealed bovine AUM vesicles by quick-freeze deep-etch showed that each AUM particle consists of a 16-nm, luminally exposed "head" anchored to the lipid bilayer via a 9-mm transmembranous "tail", and that an AUM plaque can break forming several smaller plaques separated by newly formed particle-free, hinge-like areas. These data lend support to our recently proposed three-dimensional model of mouse urothelial plaques. In addition, our findings suggest that urothelial plaques are dynamic structures that can rearrange giving rise to new plaques with intervening hinges; that the entire urothelial apical surface (both plaque and hinge areas) is highly specialized; and that these two membrane domains may be equally important in fulfilling some of the urothelial functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号