首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1535篇
  免费   53篇
  国内免费   22篇
  2023年   18篇
  2022年   14篇
  2021年   35篇
  2020年   33篇
  2019年   50篇
  2018年   39篇
  2017年   25篇
  2016年   31篇
  2015年   53篇
  2014年   63篇
  2013年   77篇
  2012年   33篇
  2011年   43篇
  2010年   41篇
  2009年   48篇
  2008年   47篇
  2007年   55篇
  2006年   56篇
  2005年   56篇
  2004年   45篇
  2003年   51篇
  2002年   41篇
  2001年   27篇
  2000年   27篇
  1999年   23篇
  1998年   33篇
  1997年   31篇
  1996年   26篇
  1995年   20篇
  1994年   26篇
  1993年   20篇
  1992年   28篇
  1991年   27篇
  1990年   21篇
  1989年   22篇
  1988年   31篇
  1987年   16篇
  1986年   14篇
  1985年   31篇
  1984年   38篇
  1983年   10篇
  1982年   29篇
  1981年   18篇
  1980年   21篇
  1979年   18篇
  1978年   19篇
  1977年   21篇
  1976年   15篇
  1973年   10篇
  1971年   9篇
排序方式: 共有1610条查询结果,搜索用时 320 毫秒
111.
112.
Recently, we established a protocol for the cultivation of primary porcine oviduct epithelial cells (POEC), which promoted tissue-like morphology for a prolonged culture period. The present study focuses on developing this model into a comprehensive, standardized culture system, as a candidate tool for reproductive toxicity testing and basic research. We cultivated POEC isolated from 25 animals in our culture system for both 3 and 6 weeks and systematically analyzed effects of medium conditioning, supplementation with standardized sera, and culture duration in both freshly isolated and cryopreserved cells. The differentiation status was evaluated via histomorphometry, transepithelial electrical resistance (TEER) measurement, and expression analyses. The culture system possessed high reproducibility, more than 95% of cultures achieved a fully differentiated phenotype. Cells recapitulated in vivo–like morphology and ultrastructure from 3 to 6 weeks. Cryopreservation of the cells prior to cultivation did not affect culture quality of POEC. Employment of conditioned medium ensured optimal promotion of POEC differentiation, and different standardized sera induced fully differentiated phenotypes. Consistent TEER establishment indicated the presence and maintenance of cell type–specific intercellular junctions. The functionality of POEC was proven by consistent mucin secretion and stable expression of selected markers over the whole culture duration. We conclude that POEC are suitable for experiments from 3 weeks up to at least 6 weeks of culture. Therefore, this culture system could be used for in vitro estrous cycle simulation and long-term investigation of toxic effects on oviduct epithelium.  相似文献   
113.
An Na+-dependent active process for myo-inositol (MI) uptake, sharing a common carrier system with glucose and sensitive to phlorizin, was previously established in primary cultures of bovine retinal pigment epithelial (RPE) cells (26, 32). The present report further examines the nature of glucose-induced inhibition of MI transport in primary cultures of RPE cells. RPE cells were grown in supplemented Dulbecco's modification of Eagle's medium (DMEM) containing 5 mM D-glucose (basic growth media) or 40 mM D-glucose or its nonmetabolizable analogue, α-methyl-D-glucoside (αMG); 1–5 mM nonradioactive MI, pyruvate, or lactate; or 0.2–20 µM phorbol 12-myristate 13-acetate (TPA) or straurosporin (modified growth media), for up to 4 weeks. The capacity of RPE cells to accumulate 3H-MI (ratios of intracellular transported radioactive MI, [MI]i, to external free MI concentration, [MI]i/[MI]0) decreased by up to 41% or 34% when cells were grown for 10 days or longer with 40 mM D-glucose or 40 mM αMG, respectively, compared to cells grown in basic growth media. The rate of uptake of 3H-MI also was reduced to 63 ± 15% or 48 ± 8% of the control values when cells were fed 1 or 5 mM nonradioactive MI, respectively. In addition, cellular capacity to bind to [3H]phlorizin was reduced to 52 ± 7%, 61 ± 5%, or 38 ± 6% of the controls when RPE cells were fed 40 mM D-glucose, 40 mM αMG, or 5 mM nonradioactive MI, respectively. Growth media containing either pyruvate or lactate, the glucose metabolites, did not suppress the ability of RPE cells to accumulate MI. An 18 ± 8% reduction in [3H]thymidine incorporation into DNA occurred when cells were grown in 40 mM glucose for 12–14 days, compared to cells grown with 5 mM glucose. Chronic treatment (12–14 days) of the cells with phorbol ester, an activator of protein kinase C, caused up to twofold increase in MI uptake, [3H]phlorizin binding, cell number, and DNA synthesis. However, when the rates of MI uptake into cells grown in basic growth media or TPA-treated media were normalized to cell number, no significant difference in MI uptake was found between the treated and untreated cells. Addition of staurosporin, a protein kinase C inhibitor, together with TPA, in the growth media reversed the phorbol-induced increase of MI uptake. In contrast to its chronic effect, a 60-min incubation (acute effect) of cells in the presence of TPA, with or without inclusion of stauropsorin, did not alter the uptake of 3H-MI into RPE cells, regardless of glucose levels in the growth media. These studies indicated that glucose itself, and not glucose metabolites, regulated uptake of MI into primary cultures of RPE cells. In addition, glucose-induced down-regulation of MI uptake was not mediated through the protein kinase C pathway, but the staurosporin-inhibited, TPA-stimulated protein kinase C was partly responsible for growth and proliferation of RPE cells.  相似文献   
114.
Alterations in corneal innervations result in impaired corneal sensation, severe dry eye and damage to the epithelium that may in turn lead to corneal ulcers, melting and perforation. These alterations can occur after refractive surgery. We have discovered that pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA or the docosanoid bioactive neuroprotectin D1 (NPD1)) induces nerve regeneration after corneal surgery that damages the stromal nerves. We found that PEDF is released from corneal epithelial cells after injury, and when DHA is provided to the cells it stimulates the biosynthesis of NPD1 by an autocrine mechanism. The combination of PEDF plus DHA also decreased the production of leukotriene B4 (LTB4), a neutrophil chemotactic factor, thereby decreasing the inflammation induced after corneal damage. These studies suggest that PEDF plus DHA and its derivative NPD1 hold promise as a future treatment to restore a healthy cornea after nerve damage.  相似文献   
115.
As an inhibitor of apoptosis (IAP) family member, Survivin is known for its role during regulation of apoptosis. More recently its function as a cell cycle regulator has become evident. Survivin was shown to play a pivotal role during embryonic development and is highly expressed in regenerative tissue as well as in many cancer types. We examined the function of Survivin during mouse intestinal organogenesis and in gut pathophysiology. We found high expression of Survivin in experimentally induced colon cancer in mice but also in colon tumors of humans. Moreover, Survivin was regulated by TGF-β and was found to be highly expressed during mucosal healing following intestinal inflammation. We identified that expression of Survivin is essential early on in life, as specific deletion of Survivin in Villin expressing cells led to embryonic death around day 12 post coitum. Together with our recent study on the role of Survivin in the gut of adult mice our data demonstrate that Survivin is an essential guardian of embryonic gut development and adult gut homeostasis protecting the epithelium from cell death promoting the proliferation of intestinal stem and progenitor cells.  相似文献   
116.
117.
Incomplete tear film spreading and eyelid closure can cause defective renewal of the ocular surface and air exposure‐induced epithelial keratopathy (EK). In this study, we characterized the role of autophagy in mediating the ocular surface changes leading to EK. Human corneal epithelial cells (HCECs) and C57BL/6 mice were employed as EK models, respectively. Transmission electron microscopy (TEM) evaluated changes in HCECs after air exposure. Each of these models was treated with either an autophagy inhibitor [chloroquine (CQ) or 3‐methyladenine (3‐MA)] or activator [Rapamycin (Rapa)]. Immunohistochemistry assessed autophagy‐related proteins, LC3 and p62 expression levels. Western blotting confirmed the expression levels of the autophagy‐related proteins [Beclin1 and mammalian target of rapamycin (mTOR)], the endoplasmic reticulum (ER) stress‐related proteins (PERK, eIF2α and CHOP) and the PI3K/Akt/mTOR signalling pathway‐related proteins. Real‐time quantitative PCR (qRT‐PCR) determined IL‐1β, IL‐6 and MMP9 gene expression levels. The TUNEL assay detected apoptotic cells. TEM identified autophagic vacuoles in both EK models. Increased LC3 puncta formation and decreased p62 immunofluorescent staining and Western blotting confirmed autophagy induction. CQ treatment increased TUNEL positive staining in HCECs, while Rapa had an opposite effect. Similarly, CQ injection enhanced air exposure‐induced apoptosis and inflammation in the mouse corneal epithelium, which was inhibited by Rapa treatment. Furthermore, the phosphorylation status of PERK and eIF2α and CHOP expression increased in both EK models indicating that ER stress‐induced autophagy promoted cell survival. Taken together, air exposure‐induced autophagy is indispensable for the maintenance of corneal epithelial physiology and cell survival.  相似文献   
118.
119.
120.
Inflammasomes are cytosolic, multimeric protein complexes capable of activating pro‐inflammatory cytokines such as IL‐1β and IL‐18, which play a key role in host defence. Inflammasome components are highly expressed in the intestinal epithelium. In recent years, studies have begun to demonstrate that epithelial‐intrinsic inflammasomes play a critical role in regulating epithelial homeostasis, both by defending the epithelium from pathogenic insult and through the regulation of the mucosal environment. However, the majority of research regarding inflammasome activation has focused on professional immune cells, such as macrophages. Here, we present an overview of the current understanding of inflammasome function in epithelial cells and at mucosal surfaces and, in particular, in the intestine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号