首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   4篇
  国内免费   4篇
  71篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   13篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  1999年   1篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1978年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
41.
Gypsy moth (Lymantria dispar) larvae displayed marked developmental resistance within an instar to L. dispar M nucleopolyhedrovirus (LdMNPV) regardless of the route of infection (oral or intrahemocoelic) in a previous study, indicating that in gypsy moth, this resistance has a systemic component. In this study, gypsy moth larvae challenged with the Amsacta moorei entomopoxvirus (AMEV) showed developmental resistance within the fourth instar to oral, but not intrahemocoelic, inoculation. In general, gypsy moth is considered refractory to oral challenge with AMEV, but in this study, 43% mortality occurred in newly molted fourth instars fed a dose of 5×106 large spheroids of AMEV; large spheroids were found to be more infectious than small spheroids when separated by a sucrose gradient. Developmental resistance within the fourth instar was reflected by a 2-fold reduction in mortality (18%–21%) with 5×106 large spheroids in larvae orally challenged at 24, 48 or 72 h post-molt. Fourth instars were highly sensitive to intrahemocoelic challenge with AMEV; 1PFU produced approximately 80% mortality regardless of age within the instar. These results indicate that in gypsy moth, systemic developmental resistance may be specific to LdMNPV, reflecting a co-evolutionary relationship between the baculovirus and its host.  相似文献   
42.
We undertook a field study to determine patterns of specialisation of ectoparasites in cave-dwelling bats in Sri Lanka. The hypothesis tested was that strict host specificity (monoxeny) could evolve through the development of differential species preferences through association with the different host groups. Three species of cave-dwelling bats were chosen to represent a wide range of host-parasite associations (monoxeny to polyxeny), and both sympatric and allopatric roosting assemblages. Of the eight caves selected, six caves were “allopatric” roosts where two of each housed only one of the three host species examined: Rousettus leschenaulti (Pteropodidae), Rhinolophus rouxi and Hipposideros speoris (Rhinolophidae). The remaining two caves were “sympatric” roosts and housed all three host species. Thirty bats of each species were examined for ectoparasites in each cave, which resulted in a collection of nycteribiid and streblid flies, an ischnopsyllid bat flea, argasid and ixodid ticks, and mites belonging to three families. The host specificity of bat parasites showed a trend to monoxeny in which 70% of the 30 species reported were monoxenous. Odds ratios derived from χ2-tests revealed two levels of host preferences in less-specific parasites (i) the parasite was found on two host species under conditions of both host sympatry and host allopatry, with a preference for a single host in the case of host sympatry and (ii) the preference for a single host was very high, hence under conditions of host sympatry, it was confined to the preferred host only. However, under conditions of host allopatry, it utilized both hosts. There appears to be an increasing prevalence in host preferences of the parasites toward confinement to a single host species. The ecological isolation of the bat hosts and a long history of host-parasite co-existence could have contributed to an overall tendency of bat ectoparasites to become specialists, here reflected in the high percentage of monoxeny.  相似文献   
43.
The food-borne trematodes, Opisthorchis viverrini, O. felineus and Clonorchis sinensis, have long been recognized as the cause of major human health problems, with an estimated 40 million infected persons. Of the three species of liver fluke, only O. viverrini is classified as a type 1 carcinogen because of its role as an initiator of chronic inflammation and the subsequent development of cholangiocarcinoma. At present, there are no techniques for the early diagnosis of cholangiocarcinoma and it is fatal for most patients. There is considerable variation in parasite prevalence and disease presentation in different geographical areas, the latter of which may be associated with genetic differences among parasites. In the present study, multilocus enzyme electrophoresis was used to provide a comprehensive genetic characterization of O. viverrini from different geographical localities in Thailand and the Peoples' Democratic Republic of Laos. Parasites from different localities were compared genetically at 32 enzyme loci. The results of the genetic analyses are sufficient to reject the null hypothesis that O. viverrini represents a single species. Therefore, O. viverrini consists of at least two genetically distinct, yet morphologically similar (i.e. cryptic) species. Moreover, there was also separation of the different populations of snails (i.e. the first intermediate hosts) into two distinct genetic groups that corresponded with the delineation of O. viverrini into two species. This suggests that there may be a history of co-evolution in this host-parasite lineage. Additionally, five distinct genetic groups of parasites were detected, each of which occurred within a different and independent river wetland system. Our findings have major implications for the implementation of effective control and surveillance programs targeted to these medically important food-borne parasites.  相似文献   
44.
Summary Soil samples from several European countries; Sweden, the Netherlands, Spain, Italy and Greece, contained rhizobial populations capable of forming an effective symbiosis with the cultivated pea cv. Rondo from the Netherlands. The range of variation among the European Rhizobium strains, as expressed on pea cv. Rondo, was not so large and almost the same variation could be found within the rhizobial population within each country. Superior Rhizobium strains for the Dutch pea were not restricted to soils from the Netherlands but were also found in those from Sweden and Italy.Soils from Turkey and Israel also contained Rhizobium strains capable of nodulating pea cv. Rondo. However, the genetic variation among these Middle East Rhizobium strains was much larger than that of the European strains. When tested on pea cv. Rondo the majority of the Middle East strains belonged to the medium or low effective classes and only a few strains were comparable with European Rhizobium strains.Dutch Rhizobium strains induced effective nodules on both the Dutch pea cv. Rondo and the Swedish cv. L 110. However, in association with a Turkish Rhizobium strain effective nodules were formed on pea cv. Rondo and ineffective nodules on cv. L 110.We suggest that the genetic uniformity of EuropeanR. leguminosarum strains is the result of selection and domestication of Rhizobium strains originally derived from the gene centres of the pea plant.  相似文献   
45.
Synopsis Herbivorous fishes and invertebrates are conspicious elements of coral reef communities where they predominate both in numbers and biomass. Herbivores and the coral reef algae on which they feed represent a co-evolved system of defense and counter-defense. Algal species have developed toxic, structural, spatial and temporal defense or escape mechanisms, while the herbivores employ strategies that involve anatomical, physiological and behavioral adaptations. Current research demonstrates that many reef fishes are highly selective in the algae they consume. Food selection in these fishes may be correlated with their morphological and digestive capabilities to rupture algal cell walls. Sea urchins select more in accordance with relative abundance, although certain algal species are clearly avoided.The determinants of community structure on coral reefs have yet to be established but evidence indicates a strong influence by herbivores. Reef herbivores may reduce the abundance of certain competitively superior algae, thus allowing corals and cementing coralline algae to survive. We discuss how the foraging activities of tropical marine herbivores affect the distribution and abundance of algae and how these activities contribute to the development of coral reef structure and the fish assemblages which are intimately associated with reef structure.This paper forms a part of the proceedings of a mini-symposium convened at Cornell University, Ithaca, N.Y., 18–19 May 1976, entitled Patterns of Community Structure in Fishes (G. S. Helfman, ed.).  相似文献   
46.
噬藻体和蓝藻间的基因转移及协同进化作用   总被引:1,自引:0,他引:1  
生物物种之间的水平基因转移广泛存在于细菌、古生菌和真核生物中,并能造成同一生境中种群的快速协同进化。噬藻体是感染蓝藻的专一性病毒,近年研究表明其在蓝藻水华生消中发挥了重要作用,使人们认识到了噬藻体的重要生态地位。综述了物种间的水平基因转移,介绍了噬藻体遗传多样性研究中常用的光合作用基因、结构蛋白基因等靶标基因所介导的基因转移以及基因转移引起的病毒和宿主的协同进化,并介绍了研究基因转移所用到的试验技术以及今后所要面临的问题。  相似文献   
47.
MHC class I molecules display peptides at the cell surface to cytotoxic T cells. The co-factor tapasin functions to ensure that MHC I becomes loaded with high affinity peptides. In most mammals, the tapasin gene appears to have little sequence diversity and few alleles and is located distal to several classical MHC I loci, so tapasin appears to function in a universal way to assist MHC I peptide loading. In contrast, the chicken tapasin gene is tightly linked to the single dominantly expressed MHC I locus and is highly polymorphic and moderately diverse in sequence. Therefore, tapasin-assisted loading of MHC I in chickens may occur in a haplotype-specific way, via the co-evolution of chicken tapasin and MHC I. Here we demonstrate a mechanistic basis for this co-evolution, revealing differences in the ability of two chicken MHC I alleles to bind and release peptides in the presence or absence of tapasin, where, as in mammals, efficient self-loading is negatively correlated with tapasin-assisted loading. We found that a polymorphic residue in the MHC I α3 domain thought to bind tapasin influenced both tapasin function and intrinsic peptide binding properties. Differences were also evident between the MHC alleles in their interactions with tapasin. Last, we show that a mismatched combination of tapasin and MHC alleles exhibit significantly impaired MHC I maturation in vivo and that polymorphic MHC residues thought to contact tapasin influence maturation efficiency. Collectively, this supports the possibility that tapasin and BF2 proteins have co-evolved, resulting in allele-specific peptide loading in vivo.  相似文献   
48.
采用“放松分子钟”模型、氨基酸位点正选择模型和分子内共进化网络估算方法,对蕨类植物光合系统Ⅰ核心蛋白PSAA编码基因psaA的进化趋势进行了研究。结果显示,叶绿体基因psaA编码区全序列具备成为蕨类植物系统发育关系重建位点的潜力,与rbcL基因联合后能构建高后验概率的系统发育树;蕨类植物的PSAA蛋白中存在一些曾经历正选择的氨基酸位点,其中29个位点聚合成为16个共进化组,通过共进化网络的方式协同影响光合系统Ⅰ的内部调整,提升其在被子植物兴起后光合环境下的适应能力。本文对蕨类植物进化潜能与分子机理的研究结果为揭示蕨类植物适应新生境提供了科学依据,也为植物系统分类学研究提供了分子依据。  相似文献   
49.
The position and shape of thermal performance curves (TPCs, the functions relating temperature to physiological performance) for ecologically relevant functions will directly affect the fitness of ectotherms and therefore should be under strong selection. However, thermodynamic considerations predict that relationships between the different components of the TPC will confound its evolutionary optimization. For instance, the “jack-of-all-temperatures” hypothesis predicts a trade-off between the breadth of the TPC and the maximal performance capacity; the “warmer is better” hypothesis suggests that low thermal optima will come with low absolute performances. Semi-aquatic organisms face the additional challenge of having to adjust their TPCs to two environments that are likely to differ in mean temperature and thermal variability. In this paper, we examine how parameters of the TPCs for maximal running and swimming speed have co-evolved in the semi-aquatic newt genus Triturus. We consider evolutionary relationships between the width and the height of the TPCs, the optimal temperatures and maximal performance. Phylogenetic comparative analyses reveal that in Triturus, swimming and running differ substantially in the (co-)variation of TPC parameters. Whereas evolutionary changes in the TPC for swimming primarily concern the shape of the curve (generalist versus specialist), most interspecific variation in running speed TPCs involves shifts in overall performance across temperatures.  相似文献   
50.
ABSTRACT: Co-evolving positions within protein sequences have been used as spatial constraints to develop a computational approach for modeling membrane protein structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号