首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1422篇
  免费   114篇
  国内免费   93篇
  1629篇
  2024年   5篇
  2023年   27篇
  2022年   21篇
  2021年   33篇
  2020年   33篇
  2019年   49篇
  2018年   36篇
  2017年   52篇
  2016年   54篇
  2015年   42篇
  2014年   64篇
  2013年   94篇
  2012年   33篇
  2011年   77篇
  2010年   67篇
  2009年   85篇
  2008年   86篇
  2007年   102篇
  2006年   93篇
  2005年   70篇
  2004年   58篇
  2003年   54篇
  2002年   48篇
  2001年   49篇
  2000年   43篇
  1999年   36篇
  1998年   29篇
  1997年   24篇
  1996年   17篇
  1995年   19篇
  1994年   19篇
  1993年   14篇
  1992年   13篇
  1991年   9篇
  1990年   5篇
  1989年   8篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1981年   4篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
排序方式: 共有1629条查询结果,搜索用时 15 毫秒
61.
62.
63.
AimTo study the dosimetric impact of statistical uncertainty (SU) per plan on Monte Carlo (MC) calculation in Monaco? treatment planning system (TPS) during volumetric modulated arc therapy (VMAT) for three different clinical cases.BackgroundDuring MC calculation SU is an important factor to decide dose calculation accuracy and calculation time. It is necessary to evaluate optimal acceptance of SU for quality plan with reduced calculation time.Materials and methodsThree different clinical cases as the lung, larynx, and prostate treated using VMAT technique were chosen. Plans were generated with Monaco? V5.11 TPS with 2% statistical uncertainty. By keeping all other parameters constant, plans were recalculated by varying SU, 0.5%, 1%, 2%, 3%, 4%, and 5%. For plan evaluation, conformity index (CI), homogeneity index (HI), dose coverage to PTV, organ at risk (OAR) dose, normal tissue receiving dose ≥5 Gy and ≥10 Gy, integral dose (NTID), calculation time, gamma pass rate, calculation reproducibility and energy dependency were analyzed.ResultsCI and HI improve as SU increases from 0.5% to 5%. No significant dose difference was observed in dose coverage to PTV, OAR doses, normal tissue receiving dose ≥5 Gy and ≥10 Gy and NTID. Increase of SU showed decrease in calculation time, gamma pass rate and increase in PTV max dose. No dose difference was seen in calculation reproducibility and dependent on energy.ConclusionFor VMAT plans, SU can be accepted from 1% to 3% per plan with reduced calculation time without compromising plan quality and deliverability by accepting variations in point dose within the target.  相似文献   
64.
Duplicated loci, for example those associated with major histocompatibility complex (MHC) genes, often have similar DNA sequences that can be coamplified with a pair of primers. This results in genotyping difficulties and inaccurate analyses. Here, we present a method to assign alleles to different loci in amplifications of duplicated loci. This method simultaneously considers several factors that may each affect correct allele assignment. These are the sharing of identical alleles among loci, null alleles, copy number variation, negative amplification, heterozygote excess or heterozygote deficiency, and linkage disequilibrium. The possible multilocus genotypes are extracted from the alleles for each individual and weighted to estimate the allele frequencies. The likelihood of an allele configuration is calculated and is optimized with a heuristic algorithm. Monte‐Carlo simulations and three empirical MHC data sets are used as examples to evaluate the efficacy of our method under different conditions. Our new software, mhc‐typer V1.1, is freely available at https://github.com/huangkang1987/mhc-typer .  相似文献   
65.
5-Methylthioribose 1-phosphate isomerase (M1Pi) is a crucial enzyme involved in the universally conserved methionine salvage pathway (MSP) where it is known to catalyze the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P) via a mechanism which remains unspecified till date. Furthermore, although M1Pi has a discrete function, it surprisingly shares high structural similarity with two functionally non-related proteins such as ribose-1,5-bisphosphate isomerase (R15Pi) and the regulatory subunits of eukaryotic translation initiation factor 2B (eIF2B). To identify the distinct structural features that lead to divergent functional obligations of M1Pi as well as to understand the mechanism of enzyme catalysis, the crystal structure of M1Pi from a hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined. A meticulous structural investigation of the dimeric M1Pi revealed the presence of an N-terminal extension and a hydrophobic patch absent in R15Pi and the regulatory α-subunit of eIF2B. Furthermore, unlike R15Pi in which a kink formation is observed in one of the helices, the domain movement of M1Pi is distinguished by a forward shift in a loop covering the active-site pocket. All these structural attributes contribute towards a hydrophobic microenvironment in the vicinity of the active site of the enzyme making it favorable for the reaction mechanism to commence. Thus, a hydrophobic active-site microenvironment in addition to the availability of optimal amino-acid residues surrounding the catalytic residues in M1Pi led us to propose its probable reaction mechanism via a cis-phosphoenolate intermediate formation.  相似文献   
66.
The development of a biopharmaceutical production process usually occurs sequentially, and tedious optimization of each individual unit operation is very time-consuming. Here, the conditions established as optimal for one-step serve as input for the following step. Yet, this strategy does not consider potential interactions between a priori distant process steps and therefore cannot guarantee for optimal overall process performance. To overcome these limitations, we established a smart approach to develop and utilize integrated process models using machine learning techniques and genetic algorithms. We evaluated the application of the data-driven models to explore potential efficiency increases and compared them to a conventional development approach for one of our development products. First, we developed a data-driven integrated process model using gradient boosting machines and Gaussian processes as machine learning techniques and a genetic algorithm as recommendation engine for two downstream unit operations, namely solubilization and refolding. Through projection of the results into our large-scale facility, we predicted a twofold increase in productivity. Second, we extended the model to a three-step model by including the capture chromatography. Here, depending on the selected baseline-process chosen for comparison, we obtained between 50% and 100% increase in productivity. These data show the successful application of machine learning techniques and optimization algorithms for downstream process development. Finally, our results highlight the importance of considering integrated process models for the whole process chain, including all unit operations.  相似文献   
67.
In this paper, EEG signals of 20 schizophrenic patients and 20 age-matched control participants are analyzed with the objective of determining the more informative channels and finally distinguishing the two groups. For each case, 22 channels of EEG were recorded. A two-stage feature selection algorithm is designed, such that, the more informative channels are first selected to enhance the discriminative information. Two methods, bidirectional search and plus-L minus-R (LRS) techniques are employed to select these informative channels. The interesting point is that most of selected channels are located in the temporal lobes (containing the limbic system) that confirm the neuro-phychological differences in these areas between the schizophrenic and normal participants. After channel selection, genetic algorithm (GA) is employed to select the best features from the selected channels. In this case, in addition to elimination of the less informative channels, the redundant and less discriminant features are also eliminated. A computationally fast algorithm with excellent classification results is obtained. Implementation of this efficient approach involves several features including autoregressive (AR) model parameters, band power, fractal dimension and wavelet energy. To test the performance of the final subset of features, classifiers including linear discriminant analysis (LDA) and support vector machine (SVM) are employed to classify the reduced feature set of the two groups. Using the bidirectional search for channel selection, a classification accuracy of 84.62% and 99.38% is obtained for LDA and SVM, respectively. Using the LRS technique for channel selection, a classification accuracy of 88.23% and 99.54% is also obtained for LDA and SVM, respectively. Finally, the results are compared and contrasted with two well-known methods namely, the single-stage feature selection (evolutionary feature selection) and principal component analysis (PCA)-based feature selection. The results show improved accuracy of classification in relatively low computational time with the two-stage feature selection.  相似文献   
68.
High-throughput SNP genotyping platforms use automated genotype calling algo- rithms to assign genotypes. While these algorithms work efficiently for individual platforms, they are not compatible with other platforms, and have individual biases that result in missed genotype calls. Here we present data on the use of a second complementary SNP genotype clustering algorithm. The algorithm was originally designed for individual fluorescent SNP genotyping assays, and has been opti- mized to permit the clustering of large datasets generated from custom-designed Affymetrix SNP panels. In an analysis of data from a 3K array genotyped on 1,560 samples, the additional analysis increased the overall number of genotypes by over 45,000, significantly improving the completeness of the experimental data. This analysis suggests that the use of multiple genotype calling algorithms may be ad- visable in high-throughput SNP genotyping experiments. The software is written in Perl and is available from the corresponding author.  相似文献   
69.
Varying‐coefficient models have become a common tool to determine whether and how the association between an exposure and an outcome changes over a continuous measure. These models are complicated when the exposure itself is time‐varying and subjected to measurement error. For example, it is well known that longitudinal physical fitness has an impact on cardiovascular disease (CVD) mortality. It is not known, however, how the effect of longitudinal physical fitness on CVD mortality varies with age. In this paper, we propose a varying‐coefficient generalized odds rate model that allows flexible estimation of age‐modified effects of longitudinal physical fitness on CVD mortality. In our model, the longitudinal physical fitness is measured with error and modeled using a mixed‐effects model, and its associated age‐varying coefficient function is represented by cubic B‐splines. An expectation‐maximization algorithm is developed to estimate the parameters in the joint models of longitudinal physical fitness and CVD mortality. A modified pseudoadaptive Gaussian‐Hermite quadrature method is adopted to compute the integrals with respect to random effects involved in the E‐step. The performance of the proposed method is evaluated through extensive simulation studies and is further illustrated with an application to cohort data from the Aerobic Center Longitudinal Study.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号