首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2783篇
  免费   203篇
  国内免费   134篇
  3120篇
  2024年   2篇
  2023年   46篇
  2022年   64篇
  2021年   101篇
  2020年   56篇
  2019年   82篇
  2018年   86篇
  2017年   79篇
  2016年   100篇
  2015年   115篇
  2014年   138篇
  2013年   215篇
  2012年   97篇
  2011年   92篇
  2010年   98篇
  2009年   134篇
  2008年   122篇
  2007年   129篇
  2006年   118篇
  2005年   103篇
  2004年   112篇
  2003年   92篇
  2002年   92篇
  2001年   55篇
  2000年   64篇
  1999年   64篇
  1998年   74篇
  1997年   57篇
  1996年   64篇
  1995年   61篇
  1994年   41篇
  1993年   34篇
  1992年   25篇
  1991年   29篇
  1990年   30篇
  1989年   27篇
  1988年   35篇
  1987年   38篇
  1986年   21篇
  1985年   27篇
  1984年   24篇
  1983年   15篇
  1982年   21篇
  1981年   9篇
  1980年   7篇
  1979年   7篇
  1978年   7篇
  1977年   4篇
  1976年   3篇
  1972年   3篇
排序方式: 共有3120条查询结果,搜索用时 12 毫秒
21.
22.
23.
One of the most severe diseases of cultivated tomato worldwide is caused by tomato yellow leaf curl virus (TYLCV), a geminivirus transmitted by the whitefly Bemisia tabaci. Here we describe the application of antisense RNAs to interfere with the disease caused by TYLCV. The target of the antisense RNA is the rare messenger RNA of the Rep protein, encoded by the C1 gene. Transgenic Nicotiana benthamiana plants expressing C1 antisense RNA were obtained and shown to resist infection by TYLCV. Some of the resistant lines are symptomless, and the replication of challenge TYLCV almost completely suppressed. The transgenes mediating resistance were shown to be effective through at least two generations of progeny.  相似文献   
24.
We investigated the physical association of the DNA topoisomerase IIbeta binding protein 1 (TopBP1), involved in DNA replication and repair but also in regulation of apoptosis, with poly(ADP-ribose) polymerase-1 (PARP-1). This enzyme plays a crucial role in DNA repair and interacts with many DNA replication/repair factors. It was shown that the sixth BRCA1 C-terminal (BRCT) domain of TopBP1 interacts with a protein fragment of PARP-1 in vitro containing the DNA-binding and the automodification domains. More significantly, the in vivo interaction of endogenous TopBP1 and PARP-1 proteins could be shown in HeLa-S3 cells by co-immunoprecipitation. TopBP1 and PARP-1 are localized within overlapping regions in the nucleus of HeLa-S3 cells as shown by immunofluorescence. Exposure to UVB light slightly enhanced the interaction between both proteins. Furthermore, TopBP1 was detected in nuclear regions where poly(ADP-ribose) (PAR) synthesis takes place and is ADP-ribosylated by PARP-1. Finally, cellular (ADP-ribosyl)ating activity impairs binding of TopBP1 to Myc-interacting zinc finger protein-1 (Miz-1). The results indicate an influence of post-translational modifications of TopBP1 on its function during DNA repair.  相似文献   
25.
DNA of higher eukaryotes is organized in supercoiled loops anchored to a nuclear matrix (NM). The DNA loops are attached to the NM by means of non-coding sequences known as matrix attachment regions (MARs). Attachments to the NM can be subdivided in transient and permanent, the second type is considered to represent the attachments that subdivide the genome into structural domains. As yet very little is known about the factors involved in modulating the MAR-NM interactions. It has been suggested that the cell is a vector field in which the linked cytoskeleton-nucleoskeleton may act as transducers of mechanical information. We have induced a stable change in the typical morphology of cultured HeLa cells, by chronic exposure of the cells to the polar compound dimethylsulfoxide (DMSO). Using a PCR-based method for mapping the position of any DNA sequence relative to the NM, we have monitored the position relative to the NM of sequences corresponding to four independent genetic loci located in separate chromosomes representing different territories within the cell nucleus. Here, we show that stable modification of the NM morphology correlates with the redefinition of DNA loop structural domains as evidenced by the shift of position relative to the NM of the c-myc locus and the multigene locus PRM1 --> PRM2 --> TNP2, suggesting that both cell and nuclear shape may act as cues in the choice of the potential MARs that should be attached to the NM.  相似文献   
26.
DNA fragments capable of conferring autonomous replicating ability to plasmids inSaccharomyces cerevisiae were isolated from four different plant genomes and from the Ti plasmid ofAgrobacterium tumefaciens. The DNA structure of these autonomously replicating sequences (ARSs) as well as two from yeast were studied using retardation during polyacrylamide gel electrophoresis and computer analysis as measures of sequence-dependent DNA structures. Bent DNA was found to be associated with the ARS elements. An 11 bp ARS consensus sequence required for ARS function was also identified in the elements examined and was flanked by unusually straight structures which were rich in A+T content. These results show that the ARS elements from genomes of higher plants have structural and sequence features in common with ARS elements from yeast and higher animals.Supported by Grant 1RO1-GM41708-O1 from the National Institute of Health.  相似文献   
27.
Clonal plant species have been shown to adopt different strategies to persist in heterogeneous environments by changing relative investments in sexual reproduction and clonal propagation. As a result, clonal diversity and genetic variation may be different along environmental gradients. We examined the regional and local population structure of the clonal rhizomatous forest herb Paris quadrifolia in a complex of forest fragments in Voeren (Belgium). Relationships between population size (the number of shoots), shoot density (the number of shoots per m2) and local growth conditions were investigated for 47 populations. Clonal diversity and genetic variation within and among 19 populations were investigated using amplified fragment length polymorphism markers. To assess the importance of sexual reproduction, seed set, seed weight and germination success were determined in 18 populations. As predicted, local growth conditions largely affected population distribution, size and density of P. quadrifolia. Populations occurring in moist and relatively productive sites contained significantly more shoots. Here, shoots were also much more sparsely distributed compared to populations occurring in dry and relatively unproductive sites, where shoots showed a strongly aggregated distribution pattern. Clonal diversity was relatively high, compared with other clonal species (G/N ratio = 0.43 and Simpson’s D=0.81). Clonal diversity significantly (P<0.01) decreased with increasing shoot density while molecular genetic variation was significantly (P<0.01) affected by population size and local environmental conditions. Lack of recruitment and out-competition of less-adapted genotypes may explain the decreased genetic variation in dry sites. Analysis of molecular variance revealed significant genetic variation among populations (Φ ST=0.42, P<0.001), whereas pairwise genetic distances were not correlated to geographic distances, suggesting that gene flow among populations is limited. Finally, the number of generative shoots, the number of seeds per fruit and seed weight were significantly and positively related to population size and local growth conditions. We conclude that under stressful conditions populations of clonal forest plant species can slowly evolve into remnant populations characterized by low levels of genetic variation and limited sexual reproduction. Conservation of suitable habitat conditions is therefore a prerequisite for effective long-term conservation of clonal forest plant species.  相似文献   
28.
Background: Habitat management for reproductively challenged rare species is a problem when there is insufficient knowledge of their autecology. This study investigated reproductive failure in the rare grass Calamagrostis porteri ssp. insperata (Swallen) C. Greene (Reed bentgrass). Does the management recommendation of high light stimulate clonal growth, flowering, and seed production? Location: Shawnee National Forest, IL, USA, and in a greenhouse and an experimental garden at Southern Illinois University, Carbondale, IL, USA. Methods: Clones obtained from the three known Illinois populations were grown in a glasshouse under experimental light and soil moisture treatments. After 3 years, plants from the high light treatment were planted outside in an experimental garden where the light treatments were maintained for two more years. In the field, vegetative and flowering tiller density, canopy cover, and associated biotic and abiotic variables including abundance of co‐occurring plant species were monitored for 5 years. The overhead tree canopy was cleared over a portion of one population. Results: In the glasshouse, plants increased in size under high light and moist soil, and there were size differences among populations. Sixty‐six per cent (20 of 30) of the genets flowered when planted outdoors under full sunlight but did not produce seed. In the field, flowering only occurred in Calamagrostis growing in the cleared area, but no seed were produced. The plants in the flowering population were smaller than plants in the other two populations. The herbaceous community associated with Calamagrostis in the open diverged from the communities remaining under the shade. Conclusions: This study highlights the difficulty of managing reproductively challenged rare species. Calamagrostis populations can be managed to enhance clonal growth, but establishment of new populations would require translocation of vegetative material as it is highly unlikely that seed can be obtained.  相似文献   
29.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号