首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   26篇
  国内免费   5篇
  2023年   10篇
  2022年   7篇
  2021年   9篇
  2020年   14篇
  2019年   16篇
  2018年   10篇
  2017年   9篇
  2016年   10篇
  2015年   10篇
  2014年   25篇
  2013年   31篇
  2012年   21篇
  2011年   30篇
  2010年   20篇
  2009年   19篇
  2008年   25篇
  2007年   26篇
  2006年   19篇
  2005年   22篇
  2004年   12篇
  2003年   22篇
  2002年   7篇
  2001年   5篇
  2000年   10篇
  1999年   10篇
  1998年   16篇
  1997年   6篇
  1996年   7篇
  1995年   10篇
  1994年   8篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   8篇
  1984年   15篇
  1983年   9篇
  1982年   14篇
  1981年   17篇
  1980年   10篇
  1979年   10篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1975年   5篇
  1974年   6篇
  1973年   4篇
  1972年   3篇
排序方式: 共有588条查询结果,搜索用时 31 毫秒
91.
Protein tyrosine nitration, protein oxidation and lipid peroxidation are nitrative/oxidative modification of protein and lipids. In this paper, a BSA (bovine serum albumin)-lecithin liposome system was used to study the nature of different forms of iron, including methemoglobin, hemin and ferric citrate, in catalyzing H2O2-nitrite system to oxidize protein and lipid as well as nitrate protein. It was found that in pH range of 5.0-9.0, in pure BSA solution or pure liposome solution, hemin and methemoglobin catalyzed protein tyrosine nitration and lipid peroxidation were decreased with the increasing of pH, while hemin and methemoglobin catalyzed protein oxidation was significantly and moderately increased, respectively. Lipid completely inhibited hemin catalyzed protein tyrosine nitration but only partially inhibited methemoglobin catalyzed protein tyrosine nitration, and its inhibitory effect on hemin induced protein oxidation was also more pronounced. In addition, BSA showed more efficient in inhibiting hemin and ferric citrate induced lipid peroxidation. At the same condition, ferric citrate was relatively ineffective in all tests. Considering protein tyrosine nitration, protein oxidation and lipid oxidation as overall oxidative damage, these results indicated that methemoglobin is more toxic than hemin and ferric citrate, the degradation procedure of heme containing macromolecules, e.g. hemoglobin to hemin and finally to low molecular weight bounded iron, is step by step detoxification. These results provide fundamental knowledge on oxidative/nitrative of biomolecules in lipid-protein coexistence system.  相似文献   
92.
Aims:  To investigate Klebsiella oxytoca strain BAS-10 growth on ferric citrate under anaerobic conditions for exopolysaccharide (EPS) production and localization on cell followed by the purification and the EPS determination of the iron-binding stability constant to EPS or biotechnological applications.
Methods and Results:  Klebsiella oxytoca ferments ferric citrate under anaerobic conditions and produces a ferric hydrogel, whereas ferrous ions were formed in solution. During growth, cells precipitate and a hydrogel formation was observed: the organic material was constituted of an EPS bound to Fe(III) ions, this was found by chemical analyses of the iron species and transmission electron microscopy of the cell cultures. Iron binding to EPS was studied by cyclic voltammetric measurements, either directly on the hydrogel or in an aqueous solutions containing Fe(III)-citrate and purified Fe(III)-EPS. From the voltammetric data, the stability constant for the Fe(III)-EPS complex can be assumed to have values of approx. 1012–1013. It was estimated that this is higher than for the Fe(III)-citrate complex.
Conclusions:  The production of Fe(III)-EPS under anaerobic conditions is a strategy for the strain to survive in mine drainages and other acidic conditions. This physiological feature can be used to produce large amounts of valuable Fe(III)-EPS, starting from a low cost substrate such as Fe(III)-citrate.
Significant and Impact of the Study:  The data herein demonstrates that an interesting metal-binding molecule can be produced as a novel catalyst for a variety of potential applications and the EPS itself is a valuable source for rhamnose purification.  相似文献   
93.
The purpose of the present study was to prepare intranasal delivery system of sildenafil citrate and estimate its relative bioavailability after nasal administration in rabbits to attain rapid onset of action with good efficacy at lower doses. Sildenafil citrate saturated solubility was determined in different solvents, cosolvents, and microemulsion systems. For nasal application, sildenafil citrate was formulated in two different systems: the first was a cosolvent system (S3) of benzyl alcohol/ethanol/water/Transcutol/taurodeoxy cholate/Tween 20 (0.5:16.8:47.7:15.9:1:18.1% w/w). The second was a microemulsion system (ME6) containing Oleic acid: Labrasol/Transcutol/water (8.33:33.3:16.66:41.66% w/w). The prepared systems were characterized in relation to their clarity, particle size, viscosity, pH, and nasal ciliotoxicity. In vivo pharmacokinetic performance of the selected system ME6 (with no nasal ciliotoxicity) was evaluated in a group of six rabbits in a randomized crossover study and compared to the marketed oral tablets. The targeted solubility (>20 mg/ml) of sildenafil citrate was achieved with cosolvent systems S1, S3, and S5 and with microemulsion systems ME3–ME6. The saturated solubility of sildenafil citrate in cosolvent system S3 and microemulsion system ME6 were 22.98 ± 1.26 and 23.79 ± 1.16 mg/ml, respectively. Microemulsion formulation ME6 showed shorter t max (0.75 h) and higher AUC(0-∞) (1,412.42 ng h/ml) compared to the oral tablets which showed t max equals 1.25 h and AUC(0-∞) of 1,251.14 ng h/ml after administration to rabbits at dose level of 5 mg/kg. The relative bioavailability was 112.89%. In conclusion, the nasal absorption of sildenafil citrate microemulsion was found to be fast, indicating the potential of nasal delivery instead of the conventional oral administration of such drug.  相似文献   
94.
Ectopic accumulation of lipids in peripheral tissues, such as pancreatic β cells, liver, heart and skeletal muscle, leads to lipotoxicity, a process that contributes substantially to the pathophysiology of insulin resistance, type 2 diabetes, steatotic liver disease and heart failure. Current evidence has demonstrated that hypothalamic sensing of circulating lipids and modulation of hypothalamic endogenous fatty acid and lipid metabolism are two bona fide mechanisms modulating energy homeostasis at the whole body level. Key enzymes, such as AMP-activated protein kinase (AMPK) and fatty acid synthase (FAS), as well as intermediate metabolites, such as malonyl-CoA and long-chain fatty acids-CoA (LCFAs-CoA), play a major role in this neuronal network, integrating peripheral signals with classical neuropeptide-based mechanisms. However, one key question to be addressed is whether impairment of lipid metabolism and accumulation of specific lipid species in the hypothalamus, leading to lipotoxicity, have deleterious effects on hypothalamic neurons. In this review, we summarize what is known about hypothalamic lipid metabolism with focus on the events associated to lipotoxicity, such as endoplasmic reticulum (ER) stress in the hypothalamus. A better understanding of these molecular mechanisms will help to identify new drug targets for the treatment of obesity and metabolic syndrome.  相似文献   
95.
Three phase partitioning (TPP) is most renowned technique used for extraction and purification of natural products. In previous studies of TPP, t-butanol is mainly used as an organic phase. This is the first report that explores ability of dimethyl carbonate (DMC) in the field of TPP as an alternate solvent for t-butanol. In the present study TPP process with t-butanol and DMC as organic phase along with different salts was applied to waste bitter gourd powder to obtained peroxidase enzyme. DMC was found to be compatible with most of salts such as ammonium sulphate and sodium citrate and explored as more efficient solvent than t-butanol. This TPP system provides 4.84 fold purity of peroxidase enzyme at optimum source concentration of 0.15 g/mL, with a system comprising DMC as organic phase, sodium citrate (20%) as salt, agitation speed 120 rpm, pH 7, temperature 30 °C and extraction time of 3 h. Present study has aimed for extraction and separation of peroxidase from bitter gourd waste with TPP technique and ensures the scope of carbonated solvents in extraction and purification of proteins.  相似文献   
96.
The reaction of lead(II) nitrate with trisodium citrate Na3(C6H5O7) in a 1:22.5 ratio at pH 4.8 provides crystals of {Na(H2O)3}[Pb5(H2O)3(C6H5O7)3(C6H6O7)]·9.5H2O (1). The structure of 1 is two-dimensional and exhibits five distinct Pb(II) sites and four different modes of citrate bonding. The five lead sites all display hemidirected coordination geometries, that is, irregular distribution of neighboring oxygen atoms resulting in obvious gaps in the coordination spheres. Consequently, the lead coordination geometries exhibit proximal bonding to a number of oxygen donors, as well as distal interactions with nearest neighbors. The coordination numbers vary from 8 to 10, with ‘5+3’, ‘5+4’, ‘6+4’ and ‘7+3’ coordination modes where the first number refers to the proximal ligands and the second to the distal set. The four crystallographically distinct citrate groups include three with deprotonated carboxylate groups (C6H5O7)3− and one with a single protonated carboxyl group (C6H6O7)2. The citrate ligands bridge 3, 5, 7 and 7 lead sites. Three of the citrate groups exhibit tridentate chelation coordination to a lead site through two carboxylate oxygen donors and the hydroxyl groups. One citrate group projects an uncoordinated -OH group and a pendant protonated carboxyl group into the interlamellar domain. This latter carboxyl group coordinates to a sodium cation, which exhibits five coordinate geometry defined by three aqua ligands and the carbonyl oxygen of the -CO2H groups in the basal plane and a citrate -OH donor in the apical position.  相似文献   
97.
Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated β-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.  相似文献   
98.
Metabolism of glutamate, the primary excitatory neurotransmitter in brain, is complex and of paramount importance to overall brain function. Thus, understanding the regulation of enzymes involved in formation and disposal of glutamate and related metabolites is crucial to understanding glutamate metabolism. Glutamate dehydrogenase (GDH) is a pivotal enzyme that links amino acid metabolism and TCA cycle activity in brain and other tissues. The allosteric regulation of GDH has been extensively studied and characterized. Less is known about the influence of lipid modifications on GDH activity, and the participation of GDH in transient heteroenzyme complexes (metabolons) that can greatly influence metabolism by altering kinetic parameters and lead to channeling of metabolites. This review summarizes evidence for palmitoylation and acylation of GDH, information on protein binding, and information regarding the participation of GDH in transient heteroenzyme complexes. Recent studies suggest that a number of other proteins can bind to GDH altering activity and overall metabolism. It is likely that these modifications and interactions contribute additional levels of regulation of GDH activity and glutamate metabolism.  相似文献   
99.
We measured the energetic cost of metamorphosis in the fruitfly, Drosophila melanogaster. Metabolic rates decreased rapidly in the first 24 h and remained low until shortly before eclosion, when the rates increased rapidly, thus creating a U-shaped metabolic curve. The primary fuel used during metamorphosis was lipid, which accounted for >80% of total metabolism. The total energy consumed during metamorphosis was lowest at 25 °C, compared to 18 and 29 °C, due to differences in metabolic rates and the length of pupal development. Temperature differentially affected metabolic rates during different stages of metamorphosis. Prepupal and late pupal stages exhibited typical increases in metabolic rate at high temperatures, whereas metabolic rates were independent of temperature during the first 2/3 of pupal development.We tested two hypotheses for the underlying cause of the U-shaped metabolic curve. The first hypothesis was that pupae become oxygen restricted as a result of remodeling of the larval tracheal system. We tested this hypothesis by exposing pupae to hypoxic and hyperoxic atmospheres, and by measuring lactic acid production during normoxic development. No evidence for oxygen limitation was observed. We also tested the hypothesis that the U-shaped metabolic curve follows changes in metabolically active tissue, such that the early decrease in metabolic rates reflects the histolysis of larval tissues, and the later increase in metabolic rates is associated with organogenesis and terminal differentiation of adult tissues. We assayed the activity of a mitochondrial indicator enzyme, citrate synthase, and correlated it with tissue-specific developmental events during metamorphosis. Citrate synthase activity exhibited a U-shaped curve, suggesting that the pattern of metabolic activity is related to changes in the amount of potentially active aerobic tissue.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号