首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3743篇
  免费   361篇
  国内免费   228篇
  4332篇
  2024年   9篇
  2023年   70篇
  2022年   93篇
  2021年   90篇
  2020年   111篇
  2019年   115篇
  2018年   126篇
  2017年   125篇
  2016年   183篇
  2015年   159篇
  2014年   217篇
  2013年   247篇
  2012年   120篇
  2011年   152篇
  2010年   110篇
  2009年   198篇
  2008年   221篇
  2007年   240篇
  2006年   209篇
  2005年   162篇
  2004年   129篇
  2003年   105篇
  2002年   99篇
  2001年   80篇
  2000年   86篇
  1999年   72篇
  1998年   69篇
  1997年   42篇
  1996年   78篇
  1995年   62篇
  1994年   61篇
  1993年   42篇
  1992年   41篇
  1991年   32篇
  1990年   39篇
  1989年   26篇
  1988年   36篇
  1987年   27篇
  1986年   23篇
  1985年   26篇
  1984年   36篇
  1983年   18篇
  1982年   16篇
  1981年   21篇
  1980年   30篇
  1979年   13篇
  1978年   8篇
  1977年   11篇
  1976年   14篇
  1973年   11篇
排序方式: 共有4332条查询结果,搜索用时 9 毫秒
91.
Forests of the future need to cope with adverse climatic conditions, in particular drought, to ensure forest stability and productivity. Given the usually long rotation period of forests, forest managers need to select appropriate, i.e. productive and climate-change resilient tree species and/or provenances, to lower tree-mortality risks and sustain current wood production rates at the end of the 21st century. A frequent means of assessing which provenances of a given species are adapted to anticipated climate conditions is common garden experiments, where trees from different provenances are planted under similar climate conditions. However, in this context soil conditions also play an important role, since they govern how climate translates into plant-available water and hence plant’s ability to cope with extreme drought events. Here, we examine the effects of soil conditions on pedunculate oak (Quercus robur L.), by studying 10 different Dutch oak provenances that were planted in three provenance trials on different soil types in 1988 in the Netherlands. Using dendroecological methods, we quantified provenance-specific productivity and assessed provenance- and site-specific growth patterns. Our results indicated clear differences in productivity among provenances as well as soil-type specific growth patterns. Consequently, our study highlights the importance of incorporating soil characteristics when evaluating the growth performance of provenances within common garden experiments.  相似文献   
92.
The Anticlinorium of Huayacocotla has several outcrops of geological and paleontological importance. However, reports of localities with paleoflora have been scarce so far. In this study, we report three new localities in the Cisuralian, the diversity and composition of which lead us to propose that the paleoflora may have been derived from vegetation that grew in an arid environment with seasonal wetness. The plant remains from the localities of Papaxtla and Calnali are highly transported and their diversity indicates the presence of several groups of plants that were shared with the La Virgen locality, which yielded the best preserved plant fossils. Changes in paleoenvironmental conditions indicate that the preservation of the flora was affected by the tectonic evolution of the region associated with sea level changes. The data presented here increase our knowledge of both the Cisuralian fossil flora and paleoenvironment in the south-central region of the Huayacocotla Anticlinorium, Hidalgo state.  相似文献   
93.
土地利用变化对三峡库区重庆段植被净初级生产力的影响   总被引:1,自引:0,他引:1  
赵晓  周文佐  田罗  何万华  章金城  刘东红  杨帆 《生态学报》2018,38(21):7658-7668
研究土地利用变化对区域植被净初级生产力(Net Primary Productivity,NPP)的影响对于明确区域植被固碳能力与土地利用变化的关系,以及维持生态系统结构稳定具有重要意义。以三峡库区重庆段为例,基于2000—2015年MOD17A3数据和土地利用数据,分析研究区NPP时空分布特征并从景观生态学的角度探讨土地利用变化对区域植被NPP的影响。研究表明:(1)NPP年均值16年间波动不大,空间分布上从东到西逐渐减少;(2)研究期内林地面积增加,耕地和草地面积减小,而NPP总量从25.6 TgC增加到了28.5 TgC,其中耕地NPP约占总量的44%,林地次之(40%),草地最少(14%),2000—2005年、2005—2010年、2010—2015年土地利用变化对NPP变化的贡献率分别为26.49%、59.76%、17.27%;(3)区域生态景观指数中的香农多样性指数SHDI、斑块密度PD与NPP呈正相关,而聚合度AI与NPP呈负相关,景观格局类型和景观格局变化均影响区域植被NPP的增长。要提高区域植被NPP,需优化土地利用格局,增加景观异质性和斑块密度,重视培育幼龄林,并控制成熟林的数量。  相似文献   
94.

Background and Aims

The interaction between forest fragmentation and predicted climate change may pose a serious threat to tree populations. In small and spatially isolated forest fragments, increased homozygosity may directly affect individual tree fitness through the expression of deleterious alleles. Climate change-induced drought stress may exacerbate these detrimental genetic consequences of forest fragmentation, as the fitness response to low levels of individual heterozygosity is generally thought to be stronger under environmental stress than under optimal conditions.

Methods

To test this hypothesis, a greenhouse experiment was performed in which various transpiration and growth traits of 6-month-old seedlings of Quercus robur differing in multilocus heterozygosity (MLH) were recorded for 3 months under a well-watered and a drought stress treatment. Heterozygosity–fitness correlations (HFC) were examined by correlating the recorded traits of individual seedlings to their MLH and by studying their response to drought stress.

Key Results

Weak, but significant, effects of MLH on several fitness traits were obtained, which were stronger for transpiration variables than for the recorded growth traits. High atmospheric stress (measured as vapour pressure deficit) influenced the strength of the HFCs of the transpiration variables, whereas only a limited effect of the irrigation treatment on the HFCs was observed.

Conclusions

Under ongoing climate change, increased atmospheric stress in the future may strengthen the negative fitness responses of trees to low MLH. This indicates the necessity to maximize individual multilocus heterozygosity in forest tree breeding programmes.  相似文献   
95.
Lichens are symbiotic organisms that comprise a fungus and a photosynthetic partner wich are recognized as a good indicator of climate change. However, our understanding of how aridity affects the diversity of saxicolous lichens in drylands is still limited. To evaluate the relationship between saxicolous lichen diversity and aridity in a central México dryland, a geographical transect was established of 100 km to build an aridity gradient in the semiarid zone of the State of Querétaro, Mexico, comprising ten sampling sites with a 10 km separation. Species richness, abundance and diversity of soil lichen species were recorded using two sampling methods: the quadrat-intercept and the line-intercept method, to compare their performance in assessing soil lichen diversity in drylands. The number of species and Shannon diversity of saxicolous lichens were higher at intermediate values of the aridity index (AI = 0.10–0.34). Quadrat intercept and point intercept methods gave quite similar results, which means that the selected method does not influence the results in a significant way. This study confirms the role of saxicolous lichens as climate change indicators and reveals the importance of the sampling method selection in the evaluation of different parameters of soil lichen diversity in drylands.  相似文献   
96.
Increasing winter temperatures are expected to cause seasonal activity of Ixodes ricinus ticks to extend further into the winter. We caught birds during winter months (November to February) at a site in the west of Scotland over a period of 24 years (1993–1994 to 2016–2017) to quantify numbers of attached I. ricinus and to relate these to monthly mean temperature. No adult ticks were found on any of the 21,731 bird captures, but 946 larvae and nymphs were found, with ticks present in all winter months, on 16 different species of bird hosts. All ticks identified to species were I. ricinus. I. ricinus are now active throughout the year in this area providing temperature permits. No I. ricinus were present in seven out of eight months when the mean temperature was below 3.5º C. Numbers of I. ricinus attached to birds increased rapidly with mean monthly temperatures above 7º C. Winter temperatures in Scotland have been above the long‐term average in most years in the last two decades, and this is likely to increase risk of tick‐borne disease.  相似文献   
97.
殷刚  孟现勇  王浩  胡增运  孙志群 《生态学报》2017,37(9):3149-3163
干旱区植被生态系统对气候变化极为敏感,并且干旱区的植被变化研究对全球碳循环具有重要意义。然而近几十年来,中亚干旱区植被对气候变化的响应机制尚不甚明朗。利用归一化植被指数NDVI数据集和MERRA(Modern-Era Retrospective Analysis for Research and Applications)气象数据,采用经验正交函数(EOF,Empirical Orthogonal Function)和最小二乘法等方法系统分析了31a(1982-2012年)来中亚地区NDVI在不同时间尺度的时空变化特征。进一步分析和研究NDVI与气温和降水的相关性,结果表明:1982-2012年,中亚地区年NDVI总体呈现缓慢增长趋势,而1994年以后年NDVI呈现明显下降趋势,尤其在哈萨克斯坦北部草原地区下降趋势尤为突出。这可能是由于过去30年间,中亚地区降水累计量的持续减少造成的。NDVI的季节变化表明春季NDVI增长最为明显,冬季则显著下降。与平原区相比,中亚山区的NDVI值增长幅度最大,并且山区年NDVI与季节NDVI呈现显著增加趋势(P < 0.05)。中亚地区年NDVI与年降水量正相关,而年NDVI与气温变化存在弱负相关。年NDVI和气温的正相关中心在中亚南部地区,负相关中心则出现在哈萨克斯坦的西部和北部地区;NDVI和降水的相关性中心刚好与气温相反。此外,在近30年间的每年6月至9月,中亚地区NDVI与气温存在近一个月的时间延迟现象。本研究为中亚干旱区生态系统变化和中亚地区碳循环的估算提供科学依据。  相似文献   
98.
Etsuo Kokufuta 《Bioseparation》1998,7(4-5):241-252
Polyelectrolyte-coated microcapsules can be prepared by adsorption of polyions onto microcapsule surfaces in aqueous solutions under appropriate pH and ionic conditions. The resulting polyelectrolyte-coated microcapsules provide a promising tool for studying pH-induced configurational changes in polyions adsorbed onto hydrophobic membranes (capsule walls). An interesting application of polyelectrolyte-coated microcapsules is the pH-sensitive on/off control of microencapsulated enzyme reactions through alterations in the substrate permeability of the capsule wall by pH-conditioned configurational changes in the adsorbed polyion layer. This paper presents an overview of pH-induced conformational changes of polyelectrolytes in solutions, preparation of polyelectrolyte-coated microcapsules with an immobilized enzyme, and on/off control of the respective enzyme reactions by pH adjustment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
99.
(1) Most ferns are restricted to moist and shady habitats, but it is not known whether soil moisture or atmospheric water status are decisive limiting factors, or if both are equally important. (2) Using the rare temperate woodland fern Polystichum braunii, we conducted a three‐factorial climate chamber experiment (soil moisture (SM) × air humidity (RH) × air temperature (T)) to test the hypotheses that: (i) atmospheric water status (RH) exerts a similarly large influence on the fern's biology as soil moisture, and (ii) both a reduction in RH and an increase in air temperature reduce vigour and growth. (3) Nine of 11 morphological, physiological and growth‐related traits were significantly influenced by an increase in RH from 65% to 95%, leading to higher leaf conductance, increased above‐ and belowground productivity, higher fertility, more epidermal trichomes and fewer leaf deformities under high air humidity. In contrast, soil moisture variation (from 66% to 70% in the moist to ca. 42% in the dry treatment) influenced only one trait (specific leaf area), and temperature variation (15 °C versus 19 °C during daytime) only three traits (leaf conductance, root/shoot ratio, specific leaf area); RH was the only factor affecting productivity. (4) This study is the first experimental proof for a soil moisture‐independent air humidity effect on the growth of terrestrial woodland ferns. P. braunii appears to be an air humidity hygrophyte that, whithin the range of realistic environmental conditions set in this study, suffers more from a reduction in RH than in soil moisture. A climate warming‐related increase in summer temperatures, however, seems not to directly threaten this endangered species.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号