首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2082篇
  免费   31篇
  国内免费   26篇
  2024年   1篇
  2023年   7篇
  2022年   8篇
  2021年   22篇
  2020年   27篇
  2019年   23篇
  2018年   45篇
  2017年   34篇
  2016年   33篇
  2015年   47篇
  2014年   110篇
  2013年   139篇
  2012年   132篇
  2011年   161篇
  2010年   113篇
  2009年   119篇
  2008年   103篇
  2007年   107篇
  2006年   108篇
  2005年   91篇
  2004年   84篇
  2003年   52篇
  2002年   37篇
  2001年   19篇
  2000年   29篇
  1999年   30篇
  1998年   21篇
  1997年   34篇
  1996年   49篇
  1995年   48篇
  1994年   29篇
  1993年   23篇
  1992年   20篇
  1991年   25篇
  1990年   15篇
  1989年   10篇
  1988年   11篇
  1987年   12篇
  1986年   15篇
  1985年   27篇
  1984年   31篇
  1983年   21篇
  1982年   26篇
  1981年   14篇
  1980年   13篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1974年   3篇
  1973年   1篇
排序方式: 共有2139条查询结果,搜索用时 31 毫秒
931.
To date, cone snail toxins ("conotoxins") are of great interest in the pursuit of novel subtype-selective modulators of voltage-gated sodium channels (Na(v)s). Na(v)s participate in a wide range of electrophysiological processes. Consequently, their malfunctioning has been associated with numerous diseases. The development of subtype-selective modulators of Na(v)s remains highly important in the treatment of such disorders. In current research, a series of novel, synthetic, and bioactive compounds were designed based on two naturally occurring μ-conotoxins that target Na(v)s. The initial designed peptide contains solely 13 amino acids and was therefore named "Mini peptide." It was derived from the μ-conotoxins KIIIA and BuIIIC. Based on this Mini peptide, 10 analogues were subsequently developed, comprising 12-16 amino acids with two disulfide bridges. Following appropriate folding and mass verification, blocking effects on Na(v)s were investigated. The most promising compound established an IC(50) of 34.1 ± 0.01 nm (R2-Midi on Na(v)1.2). An NMR structure of one of our most promising compounds was determined. Surprisingly, this structure does not reveal an α-helix. We prove that it is possible to design small peptides based on known pharmacophores of μ-conotoxins without losing their potency and selectivity. These data can provide crucial material for further development of conotoxin-based therapeutics.  相似文献   
932.
The prolactin-releasing peptide receptor and its bioactive RF-amide peptide (PrRP20) have been investigated to explore the ligand binding mode of peptide G-protein-coupled receptors (GPCRs). By receptor mutagenesis, we identified the conserved aspartate in the upper transmembrane helix 6 (Asp(6.59)) of the receptor as the first position that directly interacts with arginine 19 of the ligand (Arg(19)). Replacement of Asp(6.59) with Arg(19) of PrRP20 led to D6.59R, which turned out to be a constitutively active receptor mutant (CAM). This suggests that the mutated residue at the top of transmembrane helix 6 mimics Arg(19) by interacting with additional binding partners in the receptor. Next, we generated an initial comparative model of this CAM because no ligand docking was required, and we selected the next set of receptor mutants to find the engaged partners of the binding pocket. In an iterative process, we identified two acidic residues and two hydrophobic residues that form the peptide ligand binding pocket. As all residues are localized on top or in the upper part of the transmembrane domains, we clearly can show that the extracellular surface of the receptor is sufficient for full signal transduction for prolactin-releasing peptide, rather than a deep, membrane-embedded binding pocket. This contributes to the knowledge of the binding of peptide ligands to GPCRs and might facilitate the development of GPCR ligands, but it also provides new targeting of CAMs involved in hereditary diseases.  相似文献   
933.
The glucagon-like peptide-1 receptor (GLP-1R) is a prototypical family B G protein-coupled receptor that exhibits physiologically important pleiotropic coupling and ligand-dependent signal bias. In our accompanying article (Koole, C., Wootten, D., Simms, J., Miller, L. J., Christopoulos, A., and Sexton, P. M. (2012) J. Biol. Chem. 287, 3642-3658), we demonstrate, through alanine-scanning mutagenesis, a key role for extracellular loop (ECL) 2 of the receptor in propagating activation transition mediated by GLP-1 peptides that occurs in a peptide- and pathway-dependent manner for cAMP formation, intracellular (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). In this study, we examine the effect of ECL2 mutations on the binding and signaling of the peptide mimetics, exendin-4 and oxyntomodulin, as well as small molecule allosteric agonist 6,7-dichloro-2-methylsulfonyl-3-tert-butylaminoquinoxaline (compound 2). Lys-288, Cys-296, Trp-297, and Asn-300 were globally important for peptide signaling and also had critical roles in governing signal bias of the receptor. Peptide-specific effects on relative efficacy and signal bias were most commonly observed for residues 301-305, although R299A mutation also caused significantly different effects for individual peptides. Met-303 was more important for exendin-4 and oxyntomodulin action than those of GLP-1 peptides. Globally, ECL2 mutation was more detrimental to exendin-4-mediated Ca(2+)i release than GLP-1(7-36)-NH(2), providing additional evidence for subtle differences in receptor activation by these two peptides. Unlike peptide activation of the GLP-1R, ECL2 mutations had only limited impact on compound 2 mediated cAMP and pERK responses, consistent with this ligand having a distinct mechanism for receptor activation. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition of the receptor by peptide agonists.  相似文献   
934.
The glucagon-like peptide-1 receptor (GLP-1R) is a therapeutically important family B G protein-coupled receptor (GPCR) that is pleiotropically coupled to multiple signaling effectors and, with actions including regulation of insulin biosynthesis and secretion, is one of the key targets in the management of type II diabetes mellitus. However, there is limited understanding of the role of the receptor core in orthosteric ligand binding and biological activity. To assess involvement of the extracellular loop (ECL) 2 in ligand-receptor interactions and receptor activation, we performed alanine scanning mutagenesis of loop residues and assessed the impact on receptor expression and GLP-1(1-36)-NH(2) or GLP-1(7-36)-NH(2) binding and activation of three physiologically relevant signaling pathways as follows: cAMP formation, intracellular Ca(2+) (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). Although antagonist peptide binding was unaltered, almost all mutations affected GLP-1 peptide agonist binding and/or coupling efficacy, indicating an important role in receptor activation. However, mutation of several residues displayed distinct pathway responses with respect to wild type receptor, including Arg-299 and Tyr-305, where mutation significantly enhanced both GLP-1(1-36)-NH(2)- and GLP-1(7-36)-NH(2)-mediated signaling bias for pERK1/2. In addition, mutation of Cys-296, Trp-297, Asn-300, Asn-302, and Leu-307 significantly increased GLP-1(7-36)-NH(2)-mediated signaling bias toward pERK1/2. Of all mutants studied, only mutation of Trp-306 to alanine abolished all biological activity. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition(s) of the receptor and the importance of this region in the determination of both GLP-1 peptide- and pathway-specific effects.  相似文献   
935.
Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure of this cytotoxic ketoaldehyde suggests TRPA1, a receptor channel deeply involved in inflammatory and neuropathic pain, as a molecular target. We demonstrate that extracellularly applied MG accesses specific intracellular binding sites of TRPA1, activating inward currents and calcium influx in transfected cells and sensory neurons, slowing conduction velocity in unmyelinated peripheral nerve fibers, and stimulating release of proinflammatory neuropeptides from and action potential firing in cutaneous nociceptors. Using a model peptide of the N terminus of human TRPA1, we demonstrate the formation of disulfide bonds based on MG-induced modification of cysteines as a novel mechanism. In conclusion, MG is proposed to be a candidate metabolite that causes neuropathic pain in metabolic disorders and thus is a promising target for medicinal chemistry.  相似文献   
936.
The cytotoxic activity of 10 analogs of the idealized amphipathic helical 21-mer peptide (KAAKKAA)3, where three of the Ala residues at different positions have been replaced with Trp residues, has been investigated. The peptide's cytotoxic activity was found to be markedly dependent upon the position of the Trp residues within the hydrophobic sector of an idealized α-helix. The peptides with Trp residues located opposite the cationic sector displayed no antitumor activity, whereas those peptides with two or three Trp residues located adjacent to the cationic sector exhibited high cytotoxic activity when tested against three different cancer cell lines. Dye release experiments revealed that in contrast to the peptides with Trp residues located opposite the cationic sector, the peptides with Trp residues located adjacent to the cationic sector induced a strong permeabilizing activity from liposomes composed of a mixture of zwitterionic phosphatidylcholine and negatively charged phosphatidylserine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) (2:1) but not from liposomes composed of zwitterionic phosphatidylcholine, POPC. Fluorescence blue shift and quenching experiments revealed that Trp residues inserted deeper into the hydrophobic environment of POPC/POPS liposomes for peptides with high cytotoxic activity. Through circular dichroism studies, a correlation between the cytotoxic activity and the α-helical propensity was established. Structural studies of one inactive and two active peptides in the presence of micelles using NMR spectroscopy showed that only the active peptides adopted highly coiled to helical structures when bound to a membrane surface.  相似文献   
937.
Plant cyclotides are the largest family of gene-encoded cyclic proteins. They act as host defense molecules to protect plants and are promising candidates as insecticidal and nematocidal agents in agriculture. For this promise to be realized a greater understanding of the post-translational processing of these proteins is needed. Cyclotides are cleaved from precursor proteins with subsequent ligation of the N and C termini to form a continuous peptide backbone. This cyclization step is inefficient in transgenic plants and our work aims to shed light on the specificity requirements at the excision sites for cyclic peptide production. Using the prototypic cyclotide kalata B1 (kB1) expressed from the Oak1 gene, MALDI-TOF mass spectrometry was used to examine the cyclization efficiency when mutants of the Oak1 gene were expressed in transgenic Nicotiana benthamiana. Cleavage at the N terminus of the cyclotide domain occurs rapidly with no strict specificity requirements for amino acids at the cleavage site. In contrast, the C-terminal region of the cyclotide domain in the P2, P1, P1', and P2' positions is highly conserved and only specific amino acids can occupy these positions. The cyclization reaction requires an Asn at position P1 followed by a small amino acid (Ala, Gly, Ser) at the P1' position. The P2' position must be filled by Leu or Ile; in their absence an unusual post-translational modification occurs. Substitution of the P2' Leu with Ala leads to hydroxylation of the neighboring proline. Through mutational analysis this novel proline hydroxylation motif was determined to be Gly-Ala-Pro-Ser.  相似文献   
938.
Current therapeutic approaches under development for Alzheimer disease, including γ-secretase modulating therapy, aim at increasing the production of Aβ1–38 and Aβ1–40 at the cost of longer Aβ peptides. Here, we consider the aggregation of Aβ1–38 and Aβ1–43 in addition to Aβ1–40 and Aβ1–42, in particular their behavior in mixtures representing the complex in vivo Aβ pool. We demonstrate that Aβ1–38 and Aβ1–43 aggregate similar to Aβ1–40 and Aβ1–42, respectively, but display a variation in the kinetics of assembly and toxicity due to differences in short timescale conformational plasticity. In biologically relevant mixtures of Aβ, Aβ1–38 and Aβ1–43 significantly affect the behaviors of Aβ1–40 and Aβ1–42. The short timescale conformational flexibility of Aβ1–38 is suggested to be responsible for enhancing toxicity of Aβ1–40 while exerting a cyto-protective effect on Aβ1–42. Our results indicate that the complex in vivo Aβ peptide array and variations thereof is critical in Alzheimer disease, which can influence the selection of current and new therapeutic strategies.  相似文献   
939.
Dermcidin encodes the anionic amphiphilic peptide DCD-1L, which displays a broad spectrum of antimicrobial activity under conditions resembling those in human sweat. Here, we have investigated its mode of antimicrobial activity. We found that DCD-1L interacts preferentially with negatively charged bacterial phospholipids with a helix axis that is aligned flat on a lipid bilayer surface. Upon interaction with lipid bilayers DCD-1L forms oligomeric complexes that are stabilized by Zn(2+). DCD-1L is able to form ion channels in the bacterial membrane, and we propose that Zn(2+)-induced self-assembly of DCD-1L upon interaction with bacterial lipid bilayers is a prerequisite for ion channel formation. These data allow us for the first time to propose a molecular model for the antimicrobial mechanism of a naturally processed human anionic peptide that is active under the harsh conditions present in human sweat.  相似文献   
940.
The plant defensin, NaD1, from the flowers of Nicotiana alata, is a member of a family of cationic peptides that displays growth inhibitory activity against several filamentous fungi, including Fusarium oxysporum. The antifungal activity of NaD1 has been attributed to its ability to permeabilize membranes; however, the molecular basis of this function remains poorly defined. In this study, we have solved the structure of NaD1 from two crystal forms to high resolution (1.4 and 1.58 Å, respectively), both of which contain NaD1 in a dimeric configuration. Using protein cross-linking experiments as well as small angle x-ray scattering analysis and analytical ultracentrifugation, we show that NaD1 forms dimers in solution. The structural studies identified Lys4 as critical in formation of the NaD1 dimer. This was confirmed by site-directed mutagenesis of Lys4 that resulted in substantially reduced dimer formation. Significantly, the reduced ability of the Lys4 mutant to dimerize correlated with diminished antifungal activity. These data demonstrate the importance of dimerization in NaD1 function and have implications for the use of defensins in agribiotechnology applications such as enhancing plant crop protection against fungal pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号