首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3298篇
  免费   99篇
  国内免费   34篇
  3431篇
  2024年   11篇
  2023年   33篇
  2022年   32篇
  2021年   48篇
  2020年   46篇
  2019年   78篇
  2018年   68篇
  2017年   92篇
  2016年   78篇
  2015年   57篇
  2014年   105篇
  2013年   948篇
  2012年   87篇
  2011年   81篇
  2010年   74篇
  2009年   94篇
  2008年   79篇
  2007年   134篇
  2006年   121篇
  2005年   124篇
  2004年   131篇
  2003年   93篇
  2002年   80篇
  2001年   49篇
  2000年   54篇
  1999年   65篇
  1998年   35篇
  1997年   31篇
  1996年   55篇
  1995年   47篇
  1994年   35篇
  1993年   45篇
  1992年   42篇
  1991年   42篇
  1990年   21篇
  1989年   31篇
  1988年   17篇
  1987年   31篇
  1986年   13篇
  1985年   20篇
  1984年   32篇
  1983年   12篇
  1982年   16篇
  1981年   14篇
  1980年   5篇
  1979年   8篇
  1978年   2篇
  1977年   7篇
  1976年   4篇
  1971年   1篇
排序方式: 共有3431条查询结果,搜索用时 15 毫秒
51.
The circadian rhythm of locomotor activity of the field mouse Mus booduga was studied and single animal phase response curves (PRCs) (n = 8) were constructed for 15-min daylight pulses of 1000 lux intensity. The light pulses, presented at different phases of the circadian cycle, evoked advancing and delaying phase shifts (ΔPHs) depending on the circadian time (CT) of light pulse application. ΔPHs by light pulses applied at the same phase are strongly correlated with the animals' circadian period (τ). The results indicate a significant correlation between (i) τ and the area under the advance zone of the PRC (A) (r = +0.72, p > 0.05), (ii) τ and the area under the delay zone of the PRC (D) (r = -0.98, p > 0.00001), (iii) τ and the difference between the area under delay and advance zone of PRC (D-A) (r = -0.97, p > 0.00001), and (iv) between τ and ΔpHs (at various phases of the circadian cycle) and further suggest that the waveform and time course of PRC depend on the animals' endogenous period (τ). (Chronobiology International, 13(6), 401–409, 1996)  相似文献   
52.
The avian circadian rhythm pacemaker is composed of the retina, pineal gland and suprachiasmatic nucleus. As an intact input-pacemaker-output system, each of these structures is linked within a neuroendocrine loop to influence downstream processes and peripheral oscillations. While our previous study found that monochromatic light affected the circadian rhythms of clock genes in the chick retina, the effect of the pineal gland on the response of the retinal circadian clock under monochromatic light still remains unclear. In this study, a total of 144 chicks, including sham-operated and pinealectomized groups, were exposed to white, red, green or blue light. After 2 weeks of light illumination, the circadian expression of six core clock genes (cClock, cBmal1, cCry1, cCry2, cPer2 and cPer3), melanopsin (cOpn4-1, cOpn4-2), Arylalkylamine N-acetyltransferase (cAanat) and melatonin was examined in the retina. The cBmal1, cCry1, cPer2, cPer3, cOpn4-1, cOpn4-2 and cAanat genes as well as melatonin had circadian rhythmic expression in both the sham-operated and pinealectomized groups under different monochromatic lights, while cClock and cCry2 had arrhythmic 24 h profiles in all of the light-treated groups. After pinealectomy, the rhythmicity of the clock genes, melanopsins, cAanat and melatonin in the chick retina did not change, especially the mesors, amplitudes and phases of cBmal1, cOpn4-1, cOpn4-2, cAanat and melatonin. Compared to the white light group, however, green light increased the mRNA expression of the positive-regulating clock genes cBmal1, cAanat, cOpn4-1 and cOpn4-2 as well as the melatonin content in pinealectomized chicks, whereas red light decreased their expression. These results suggest that the chick retina is a relatively independent circadian oscillator from the pineal gland, whose circadian rhythmicity (including photoreception, molecular clock and melatonin output) is not altered after pinealectomization. Moreover, green light increases ocular cAanat expression and melatonin synthesis by accelerating the expression of melanopsin and positive-regulating clock genes cBmal1 and cClock.  相似文献   
53.
Summary The somata of the efferent neurosecretory fibers that control the circadian sensitivity rhythm in the median eyes of the scorpion, Androctonus australis, were detected in the brain by retrograde labeling with Lucifer Yellow CH. A total of 20–40 neurons are arranged in two groups displaying a bilaterally symmetrical, marginal position near the circumesophageal connectives. Half the cells in each group send fibers into the ipsilateral optic nerve; the fibers from the other half enter the contralateral optic nerve.  相似文献   
54.
Examples of animals that switch activity times between nocturnality and diurnality in nature are relatively infrequent. Furthermore, the mechanism for switching activity time is not clear: does a complete inversion of the circadian system occur in conjunction with activity pattern? Are there switching centers downstream from the internal clock that interpret the clock differently? Or does the switch reflect a masking effect? Answering these key questions may shed light on the mechanisms regulating activity patterns and their evolution. The golden spiny mouse (Acomys russatus) can switch between nocturnal and diurnal activity. This study investigated the relationship between its internal circadian clock and its diurnal activity pattern observed in the field. The goal is to understand the mechanisms underlying species rhythm shifts in order to gain insight into the evolution of activity patterns. All golden spiny mice had opposite activity patterns in the field than those under controlled continuous dark conditions in the laboratory. Activity and body temperature patterns in the field were diurnal, while in the laboratory all individuals immediately showed a free-running rhythm starting with a nocturnal pattern. No phase transients were found toward the preferred nocturnal activity pattern, as would be expected in the case of true entrainment. Moreover, the fact that the free-running activity patterns began from the individuals' subjective night suggests that golden spiny mice are nocturnal and that their diurnality in their natural habitat in the field results from a change that is downstream to the internal clock or reflects a masking effect.  相似文献   
55.
Rice seedlings maintained under uncontrolled glasshouse conditions were inoculated with conidial suspensions of a fungal pathogen, Helminthosporium oryzae, at various times during the 24 h. Significant increase in the percent germination and germ tube length of conidia were observed in the rice samples inoculated at 02:00 and 06:00h. The 24 h temporal variation in leaf temperature was positively correlated with variation in stomatal movements. The results indicate a 24 h rhythm in the behavior of the fungal pathogen on the host in relation to the conditions of the growing environment. In all the inoculated seedlings, the appearance of a large number of brown leaf spots was confined to the light span. Among the plants inoculated, earlier initiation of brown leaf spot appearance, maximum number of leaf spots, and highest disease severity were observed when plants were inoculated at 02:00h. There was a positive correlation between disease severity of the host and in vivo values of percent germination of conidia and germ tube length of the pathogen in plants inoculated between 02:00 and 06:00h. The findings of this study implicate that light intensity and temperature could play a predominant role in controlling disease susceptibility rhythms in plants.  相似文献   
56.
Bayesian estimates of divergence times based on the molecular clock yield uncertainty of parameter estimates measured by the width of posterior distributions of node ages. For the relaxed molecular clock, previous works have reported that some of the uncertainty inherent to the variation of rates among lineages may be reduced by partitioning data. Here we test this effect for the purely morphological clock, using placental mammals as a case study. We applied the uncorrelated lognormal relaxed clock to morphological data of 40 extant mammalian taxa and 4,533 characters, taken from the largest published matrix of discrete phenotypic characters. The morphologically derived timescale was compared to divergence times inferred from molecular and combined data. We show that partitioning data into anatomical units significantly reduced the uncertainty of divergence time estimates for morphological data. For the first time, we demonstrate that ascertainment bias has an impact on the precision of morphological clock estimates. While analyses including molecular data suggested most divergences between placental orders occurred near the K‐Pg boundary, the partitioned morphological clock recovered older interordinal splits and some younger intraordinal ones, including significantly later dates for the radiation of bats and rodents, which accord to the short‐fuse hypothesis.  相似文献   
57.
The objective was to determine the effect of ACTH 1-17, an adrenocorticotropin analogue, on the mitotic index in the corneal epithelium of mice standardized in 12 hr of light alternating with 12 hr darkness. A question asked was whether the time of administration along the 24-hr time scale influenced any response found. The findings showed that ACTH 1-17 could, depending upon when it was administered, bring about a statistically significant decrease, an increase or even no such change in the mitotic index. The greatest responses found were increases, especially when ACTH 1-17 was administered during the dark span. Also the time after injection when the responses occurred varied. The greatest response recorded was at 12 hr after injection when ACTH 1-17 was given at 2 hr into the dark with a 641% and a 718% increase with a low (0.02 IU/kg) and a higher (20 IU/kg) dose, respectively. A 3-way analysis of variance supported the conclusion that the kind-of-treatment, time-of-treatment and treatment-to-kill interval (sampling time) are important factors when determining any response to ACTH 1-17 on the mitotic index.  相似文献   
58.
This review considers the effects of temperature on insect diapause induction and the photoperiodic response, and includes constant temperature, temperature cycles, pulses and steps in daily light–dark cycles, constant darkness and in constant light, all with reference to various circadian‐based “clock” models. Although it is a comparative survey, it concentrates on two species, the flesh fly Sarcophaga argyrostoma and its pupal parasite Nasonia vitripennis, which possess radically different photoperiodic mechanisms, although both are based upon the circadian system. Particular attention is given to the effects of daily thermoperiod in darkness and to low and high temperature pulses in conjunction with a daily light–dark cycle, treatments that suggest that S. argyrostoma “measures” night length with a “clock” of the external coincidence type. However, N. vitripennis responds to seasonal changes in photoperiod with an internal coincidence device involving both “dawn” and “dusk” oscillators. Other species may show properties of both external and internal coincidence. Although the precepts of external coincidence have been well formulated and supported experimentally, those for internal coincidence remain obscure.  相似文献   
59.
The present study examines how the circadian oscillators in the retina and the suprachiasmatic nucleus (SCN) respond to changes in photoperiod. Arylalkylamine N-acetyltransferase (aa-nat) gene expression studied by quantitative RT-PCR revealed that in adult Sprague-Dawley rats kept under different light-dark (LD) cycles for two weeks the temporal pattern of AA-NAT mRNA expression was identical in retina and pineal gland. In both tissues, the time span between the onset of darkness and the nocturnal rise in AA-NAT mRNA expression was 3 h under LD 20:4, 6 h under LD 12:12, and 15 h under LD 4:20. As aa-nat expression in the pineal gland is regulated by the circadian oscillator in SCN, the results suggest that the photoperiodic differences accompanying the seasons of the year are imprinted in more than one oscillator and that this may accentuate the important message regarding 'time of year.'  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号