In the present study we demonstrated that NO synthase and xanthine oxidase of synaptosomes isolated from rabbit brain cortex can be activated by the gas phase of cigarette smoke to produce nitric oxide and superoxide which react together to form peroxynitrite. Expose of synaptosomes, up to 3 hours, in the gas phase of cigarette smoke, a gradual increase in both nitric oxide and superoxide release that were inhibited by N-monomethyl-L-arginine (100 M) and oxypurinol (1 mM), respectively, was observed. NO synthase and xanthine oxidase activities were increased approximately three fold after treatment of synaptosomes with the gas phase of cigarette smoke as compared with the gas phase deprived of oxidants. Synaptosomes treated with the gas phase of cigarette smoke dramatically increased 3-nitrotyrosine production (used as an index of peroxynitrite formation). Synaptosomes treated with the gas phase of cigarette smoke, promptly increased malondialdehyde production with subsequent decrease of synaptosomal plasma membrane fluidity estimated by fluorescence anisotropy of 1,4-(trimethyl-amino-phenyl)-6-phenyl-hexa-1,3,5-triene. Gas phase deprived of oxidants showed a small but not statistically significant (p > 0.05) effect on both malondialdehyde and membrane fluidity. In summary, the present results indicate that activation of NO synthase and xanthine oxidase of brain cells by oxidants contained in the gas phase of cigarette smoke lead to the formation of peroxynitrite a causative factor in neurotoxicity. 相似文献
Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases. 相似文献
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis. 相似文献
We have attempted to examine the effects of radical scavengers, such as amines and phenols, to trap gasphase radicals produced from the combustion of Poly (methyl methacrylate)(PMMA), which might cause damage to a living body, using an electron spin resonance (ESR) spin-trapping technique.
As a result, diphenylamine did not decrease the amount of radicals but rather increased it. It indicates that under the conditions of this study, gas-phase radicals were hardly trapped by radical scavengers and that the precursors to produce other kinds of radicals can exist.
It was suggested that from the experiments using several peroxides, the precursors should be diacylperoxides produced from the combustion of PMMA. 相似文献
Aim: Stimulation of Fas death receptor is introduced as a major cause of non-alcoholic steatohepatitis (NASH) progression through suppression of cell viability. Therefore, the blocking of death pathways is hypothesised to be express new approaches to NASH therapy. For this purpose, current experiment applied synthetic small interference RNA (SiRNA) to trigger Fas death receptor and to show its potential therapeutic role in designed NASH model.
Methods: Male mice were placed on a western diet (WD) for 8 weeks and exposed to cigarette smoke during the last 4 weeks of feeding to induce NASH model. In the next step, Fas SiRNA was injected to mice aiming to examine specific Fas gene silencing, after 8 weeks. As a control, mice received scrambled SiRNA. Reversible possibility of disease was examined by 3 weeks of recovery.
Results: Analysis of data is accompanied with the significant histopathological changes (steatosis, ballooning and inflammation), increased lipid profile and hepatic enzyme activities (AST, ALT, ALP) plus TBARS as well as decreased antioxidants levels in NASH model. Upon Fas-SiRNA injection, almost all measured parameters of NASH such as overexpression of Fas receptor, caspase3, NF-kB genes and marked increase of hepatic TNF-α were significantly restored and were remained nearly unchanged following recovery liking as scrambled groups.
Conclusions: The suppression of Fas receptor signalling subsequent RNAi therapy may represent an applicable strategy to decline hepatocyte damages and so NASH progression in mice. 相似文献
The aim of this study is to evaluate whether the alterations in glucose metabolism and insulin resistance are mechanisms presented in cardiac remodelling induced by the toxicity of cigarette smoke. Male Wistar rats were assigned to the control group (C; n = 12) and the cigarette smoke-exposed group (exposed to cigarette smoke over 2 months) (CS; n = 12). Transthoracic echocardiography, blood pressure assessment, serum biochemical analyses for catecholamines and cotinine, energy metabolism enzymes activities assay; HOMA index (homeostatic model assessment); immunohistochemistry; and Western blot for proteins involved in energy metabolism were performed. The CS group presented concentric hypertrophy, systolic and diastolic dysfunction, and higher oxidative stress. It was observed changes in energy metabolism, characterized by a higher HOMA index, lower concentration of GLUT4 (glucose transporter 4) and lower 3-hydroxyl-CoA dehydrogenase activity, suggesting the presence of insulin resistance. Yet, the cardiac glycogen was depleted, phosphofructokinase (PFK) and lactate dehydrogenase (LDH) increased, with normal pyruvate dehydrogenase (PDH) activity. The activity of citrate synthase, mitochondrial complexes and ATP synthase (adenosine triphosphate synthase) decreased and the expression of Sirtuin 1 (SIRT1) increased. In conclusion, exposure to cigarette smoke induces cardiac remodelling and dysfunction. The mitochondrial dysfunction and heart damage induced by cigarette smoke exposure are associated with insulin resistance and glucose metabolism changes. 相似文献
BackgroundCigarette smoking is an established risk factor for adult myeloid leukemia, particularly acute myeloid leukemia (AML), but less is known about the nature of this association and effects of smoking cessation on risk.MethodsIn a large population-based case–control study of myeloid leukemia that included 414 AML and 185 chronic myeloid leukemia (CML) cases and 692 controls ages 20–79 years, we evaluated risk associated with cigarette smoking and smoking cessation using unconditional logistic regression methods and cubic spline modeling.ResultsAML and CML risk increased with increasing cigarette smoking intensity in men and women. A monotonic decrease in AML risk was observed with increasing time since quitting, whereas for CML, the risk reduction was more gradual. For both AML and CML, among long-term quitters (≥30 years), risk was comparable to non-smokers.ConclusionsOur study confirms the increased risk of myeloid leukemia with cigarette smoking and provides encouraging evidence of risk attenuation following cessation. 相似文献
Gene expression can be modulated by epigenetic mechanisms, including chromatin modifications and small regulatory RNAs. These pathways are unevenly distributed within a cell and usually take place in specific intracellular regions. Unfortunately, the fundamental driving force and biological relevance of such spatial differentiation is largely unknown. Liquid–liquid phase separation (LLPS) is a natural propensity of demixing liquid phases and has been recently suggested to mediate the formation of biomolecular condensates that are relevant to diverse cellular processes. LLPS provides a mechanistic explanation for the self-assembly of subcellular structures by which the efficiency and specificity of certain cellular reactions are achieved. In plants, LLPS has been observed for several key factors in the chromatin and small RNA pathways. For example, the formation of facultative and obligate heterochromatin involves the LLPS of multiple relevant factors. In addition, phase separation is observed in a set of proteins acting in microRNA biogenesis and the small interfering RNA pathway. In this Focused Review, we highlight and discuss the recent findings regarding phase separation in the epigenetic mechanisms of plants. 相似文献