首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3727篇
  免费   218篇
  国内免费   642篇
  2024年   3篇
  2023年   53篇
  2022年   118篇
  2021年   105篇
  2020年   132篇
  2019年   127篇
  2018年   105篇
  2017年   133篇
  2016年   143篇
  2015年   115篇
  2014年   152篇
  2013年   337篇
  2012年   141篇
  2011年   235篇
  2010年   159篇
  2009年   282篇
  2008年   229篇
  2007年   199篇
  2006年   180篇
  2005年   175篇
  2004年   162篇
  2003年   158篇
  2002年   146篇
  2001年   128篇
  2000年   101篇
  1999年   96篇
  1998年   80篇
  1997年   58篇
  1996年   52篇
  1995年   77篇
  1994年   77篇
  1993年   50篇
  1992年   58篇
  1991年   59篇
  1990年   19篇
  1989年   14篇
  1988年   9篇
  1987年   12篇
  1986年   13篇
  1985年   32篇
  1984年   25篇
  1983年   9篇
  1982年   8篇
  1980年   4篇
  1979年   8篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
排序方式: 共有4587条查询结果,搜索用时 109 毫秒
21.
Summary Phytase production byAspergillus ficuum was studied using solid state cultivation on several cereal grains and legume seeds. The microbial phytase was used to hydrolyze the phytate in soybean meal and cotton seed meal. Wheat bran, soybean meal, cottonseed meal and corn meal supported good fungal growth and yielded a high level of phytase when an adequate amount of moisture was present. The level of phytase production on solid substrate was higher than that obtained by submerged liquid fermentation. Higher levels of phosphorus (more than 10 mg Pi/100 g substrate) in the growth medium (static culture) inhibited phytase synthesis, and the degree of phosphorus inhibition was less apparent in semisolid medium than in liquid medium. A static cultivation on semisolid substrate produced a higher level of phytase (2-20-fold) than that obtained by agitated cultivation. The minimal amount of water required for growth and enzyme production on those substrates was about 15%, while the optimum level for phytase production was between 25 and 35% and that for cell growth was above 50%. Optimum pH for phytase production was between 4 and 6.A ficuum grew well on raw (unheated) substrate containing a minimal amount of water and produced as much phytase as on heated substrate. About half of the phytic acid in soybean meal and cottonseed meal was hydrolyzed by treatment withA. ficuum phytase.  相似文献   
22.
Abstract From chemostat enrichments conducted at dilution rates of 0.025, 0.12 and 0.25 h−1 glutamate- and aspartate-fermenting bacteria were isolated. The dominant aspartate-fermenting strains in all these enrichments belonged to the genus Campylobacter , whereas 3 dissimilar types of glutamate-fermenting bacteria predominated at the different dilution rates. One of these strains was identified as Clostridium cochlearium . The remaining two were designated as strain DKglu16 (glutamate → acetate + propionate + ammonium + carbon dioxide) and DKglu21 (glutamate → acetate + formate + ammonium + carbon dioxide). Grown in continuous culture under glutamate limitation, strain DKglu16 (μmax= 0.13 h−1; K s= 1.9 μM) outcompeted C. cochlearium (μmax= 0.36 h−1; K s= 7 μM) at low dilution rates, but was outgrown at higher rates of dilution (0.044 h−1). In glutamate-limited continuous culture the competitiveness of strain DKglu16 increased considerably when lactate was added to the feed in addition to glutamate.  相似文献   
23.
A method is presented for the rapid enzymatic determination of acetate in spent bacterial culture supernatants. The assay is based on a previously published assay for acetate kinase [Bergmeyer et al. (1974) in Methods of Enzymatic Analysis (Bergmeyer, H. V., ed.), Vol. 1, pp. 425-426, Verlag Chemie-Academic Press, New York/London], and is sufficiently sensitive to detect acetate levels of 50 microM. The assay is cheaper than commercially available assays and is particularly useful for occasional use by laboratories not equipped for routine acetate analysis using gas chromatography. The application of the assay to the measurement of acetate in bacterial cultures is described, though it should also be applicable to other biological fluids and foodstuffs.  相似文献   
24.
L-[15N]Glutamic acid was prepared in high yields via a fermentative process. Brevibacterium lactofermentum, growing on a medium containing 97% enriched 15NH4Cl as a sole isotopic precursor, excreted mostly L-[15N]glutamic acid. The L-[15N]glutamic acid was purified and identified. Gas chromatography-mass spectrometry analysis was performed to demonstrate its usefulness in clinical studies.  相似文献   
25.
Summary The xyclose isomerase gene inEscherichia coli was cloned complementarily into a Leu2-negativeSchizosaccharomyces pombe mutant (ATCC 38399). The subsequent integration of the plasmid into the chromosomal DNA of the host yeast was verified by using the dot blot and southern blot techniques. The expressed xylose isomerase showed activity on a nondenaturing polyacrylamide gel. The expression of xylose isomerase gene was influenced by the concentration of nutrients in the fermentation broth. The yeast possessed a xylose isomerase activity of 20 nmol/min/mg by growing in an enriched medium containing yeast extract-malt extract-peptone (YMP) andd-xylose. The conversion ofd-xylose tod-xylulose catalyzed by xylose isomerase in the transformed yeast cells makes it possible to fermentd-xylose with ethanol as a major product. When the fermentation broth contained YMP and 5% (w/v)d-xylose, the maximal ethanol yield and productivity reached 0.42 g/g and 0.19 g/l/h, respectively.  相似文献   
26.
The mathematical model for the penicillin G fed-batch fermentation proposed by Heijnen et al. (1979) is compared with the model of Bajpai & Reuß (1980). Although the general structure of these models is similar, the difference in metabolic assumptions and specific growth and production kinetics results in a completely different behaviour towards product optimization. A detailed analysis of both models reveals some physical and biochemical shortcomings. It is shown that it is impossible to make a reliable estimation of the model parameters, only using experimental data of simple constant glucose feed rate fermentations with low initial substrate amount. However, it is demonstrated that some model parameters might be key factors in concluding whether or not altering the substrate feeding strategy has an important influence on the final amount of product.It is illustrated that feeding strategy optimization studies can be a tool in designing experiments for parameter estimation purposes.  相似文献   
27.
高温厌氧条件下纤维素的直接乙醇发酵   总被引:1,自引:0,他引:1  
本文介绍了出分解纤维素的嗜热厌氧菌Clostridium celluloflavus sp.nov.直接发酵纤维素产乙醇的初步研究、发酵于60℃下进仃,其主要产物为乙醇、乙酸、氢气和二氧化碳。文中介绍了间歇发酵的若干特征与影响发酵的因素,1%纤维素发酵至120小时,大约有70%纤维素被分解;乙醇的转化率约为0.36g/g降解纤维素;发酵液中乙醇浓度达到56至61mM。发酵中乙醇与乙酸浓度的比值因发酵时间与其它发酵条件的不同而不同。  相似文献   
28.
Summary By succesive recycling of the thin stillage in mashing and fermenting fresh corn, the glycerol content in each fermentation increased by about 0.4% and accumulated to a high of 2.1% in the beer of the fifth recycle. Glycerol concentration declined after the fifth recycle. The original fermentation contained 0.8% glycerol.Presented in part at the Society for Industrial Microbiology Annual Meeting, August 7–12, 1988, Chicago, IL.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   
29.
Abstract The comparative chromosomal locations of polymeric β-fructosidase SUC genes have been determined by Southern blot hybridization with the SUC2 probe in 91 different strains of Saccharomyces cerevisiae . Most of the strains exhibited a single SUC2 gene, but in some strains two or three SUC genes were found. All Suc strains carried a silent suc20 sequence. The accumulation of SUC genes was observed in populations derived from sources containing sucrose and seems to be absent in strains from sources promoting the MEL gene.  相似文献   
30.
酿酒酵母属(S. cereviae)变异株和粟酒裂殖酵母属(S. pombe)变异株进行属间原生质体融合得到融合株SPSC,该融合株比S. cereviae具有强的自身絮凝能力。以葡萄糖浓度150g/L的底物在30~44℃的温度范围内进行摇瓶厌氧发酵,获得最佳温度范围为34~38℃,最高发酵温度为40℃。在有效容积2.35L悬浮床反应器中,在pH值3.0~5.0范围内进行连续发酵,获得最适发酵pH为3.5~4.5。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号