首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   2篇
  2023年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1975年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
41.
An autofluorescent substance occurs in the flagella of flagellate cells of the golden and brown algae. It is localized only in the posterior (short) flagellum and could not be detected in the anterior (long) one. It showed maximum fluorescence emission at 515–520 nm upon excitation of 440 nm; therefore, it is considered to be a flavin. This substance is distributed widely among flagellate cells of golden and brown algae irrespective of their nature (vegetative cells, zoospores, gametes, or sperm). It is absent, however, in some brown algal zoospores and sperm which lack an eyespot and flagellar swelling and are considered to lack phototaxis. Because the flagellar swelling in the posterior flagellum is a presumptive photoreceptor for phototaxis in these groups, it is suggested that the flavin located in the posterior flagellum acts as a photoreceptor pigment in phototaxis.  相似文献   
42.
Sexual reproduction of the common planktonic chrysophyte Synura petersenii is described from observations made on clonal isolates grown in defined culture. Sexual fusion was isogamous and heterothallic, with cells of normal appearance from compatible clones serving as hologametes. No special culture conditions were required to induce sexual behavior; actively growing cell populations appeared to be continually receptive to mating when mixed with a sufficient number of cells from a compatible clone. A single, bipolar mating group was documented containing five of the seven clones tested. Zygotic statospores were found to be binucleate and to contain 4 chloroplasts at maturity. Production rates of zygospores were low for even the most highly compatible clones, with batch culture yields ranging from 1-20% of final cell density under the culture conditions utilized. Six of the clones tested were also capable of very low frequency (0.001-0.01%) homothallic statospore production but the reproductive significance of these cysts remains enigmatic. The dynamics of sexual encystment suggest that the process proceeds during periods of active population growth and is density dependent. Based on the characteristics of cyst induction and encystment dynamics, it is concluded that chrysophycean flagellates may have a perennation strategy quite different from that of the majority of planktonic diatoms, dinoflagellates, and green algae for which resting cyst production requires an exogenous trigger usually associated with physiological stress and periods of negative growth.  相似文献   
43.
A new order, Parmales, in the Chrysophyceae has cells with siliceous walls made up of round, triradiate and sometimes oblong plates all fitting edge to edge. In the new family, Octolaminaceae, cell walls have eight plates. Cell walls in the new genus Tetraparma have four round plates and four triradiate plates. Cell walls in the new genus Triparma have three round plates of equal size, one larger round plate, one triradiate plate and three oblong plates. In the new family, Pentalaminaceae, cell walls have three round and two triradiate plates. A total of seven new species and four subspecies are described from subarctic Pacific and Antarctic waters.  相似文献   
44.
R. A. Andersen 《Protoplasma》1991,164(1-3):143-159
Summary The cytoskeleton of flagellate chromophyte algae, zoospores and gametes is active during swimming, phototaxis, several types of phagotrophic feeding, the formation, secretion and deployment of silica-scales, and the abrupt movement of spine-scales. The flagellar basal bodies are anchored by microtubular roots and/or fibrous roots. The kinds, numbers, and paths of these roots are characteristic of different taxonomic groups within the chromophytes. There are more differences in flagellar apparatuses for taxonomic classes dominated by flagellates as compared to classes dominated by coccoid, filamentous, or parenchymatous forms. Swimming cells that exhibit phototaxis often contain an autofluorescent substance that is located at the base of one flagellum. Phagotrophy occurs in flagellates of several distantly related taxonomic classes, suggesting that phagotrophy evolved independently several times. The most complex phagotrophic process occurs in the Chrysophyceae where one microtubule of a flagellar root forms a feeding basket or pouch into which food particles are moved. The silica-scales of the Synurophyceae are formed, secreted and finally moved into position outside the cell by cytoskeletal components. The six spinescales ofApedinella (Pedinellophyceae) lie outside the plasma membrane, but they are attached by microligaments and are repositioned almost instantly by a cytoskeletal complex of actin, centrin, and microtubules. A phylogenetic classification based upon a cladistic analysis suggests that aquatic fungi are natural members of the chromophyte group.  相似文献   
45.
A convenient method is described for the preparation of fucosterol-[7-3H2] and 28-isofucosterol-[7-3H2]. Both of these 24-ethylidene sterols, as well as 5α-stigmasta-7,Z-24(28)-diene-3β-ol-[2,4-3H4], were converted into the 24β-ethyl sterol, poriferasterol, by cultures of the chrysophyte alga Ochromonas malhamensis. However, fucosterol-[7-3H2] was not so efficiently incorporated as the other two compounds thus indicating that the configuration of the 24-ethylidene group is of some importance. It is suggested that a 24-ethylidene sterol of the Z-configuration is produced in de novo poriferasterol synthesis and that a Δ22,24(28)-diene may be an important subsequent intermediate.  相似文献   
46.
The rhizoplast, a striated band elongating from the flagellar basal body to the nucleus, is conspicuous in cells of Ochromonas danica Prings. In interphase cells, it runs from the basal body of the anterior flagellum to the space between the nucleus and the Golgi body. In O. danica, the rhizoplast duplicates during mitosis and the two rhizoplasts serve as mitotic poles. In the present study, we reinvestigated mitosis of O. danica using transmission electron microscopy and immunofluorescence microscopy, especially focusing on the rhizoplast. The nuclear envelope became dispersed during metaphase, and the rhizoplasts from two sets of the flagellar basal bodies functioned as the mitotic poles. Immunofluorescence microscopy using anti‐α‐tubulin, anti‐centrin and anti‐γ‐tubulin antibodies showed that centrin molecules were localized at the flagellar basal bodies, whereas γ‐tubulin molecules were detected at the rhizoplast during the whole cell cycle.  相似文献   
47.
48.
The evolution of phenotypes is highly understudied in protists, due to the dearth of morphological characters, missing fossil record, and/or unresolved phylogeny in the majority of taxa. The chrysophyte genus Mallomonas (Stramenopiles) forms species‐specific silica scales with extraordinary diversity of their ornamentation. In this paper, we molecularly characterized three additional species to provide an updated phylogeny of 43 species, and combined this with evaluations of 24 morphological traits. Using phylogenetic comparative methods, we evaluated phylogenetic signal in traits, reconstructed the trait evolution, and compared the overall phylogenetic and morphological diversity. The majority of traits showed strong phylogenetic signal and mostly dynamic evolution. Phylogenetic relatedness was often reflected by the phenotypic similarity. Both V‐rib and dome are very conservative structures that are presumably involved in precise scale overlap and bristle attachment, respectively. Based on modern species, it seems the dome firstly appeared on apical and/or caudal scales, and only later emerged on body scales. Bristle was presumably present in the common ancestor and gradually elongated ever since. However, most other morphological traits readily changed during the evolution of Mallomonas.  相似文献   
49.
The cells of synurophyte flagellates (algal class Synurophyceae, formerly included in the Chrysophyceae) are enclosed within a regularly imbricate layer of ornamented siliceous scales. Scale morphology is of critical taxonomic importance within this group of algae, and the scales are valuable indicator microfossils in paleolimnological studies. The data presented here demonstrate that scale morphology and the integrity of the scale layer can exhibit extreme variability in culture as a function of the cellular quota of silica under silica-limited growth. Silica-limited, steady-state populations of the colonial flagellate Synura petersenii Korsh. were maintained over a range of specific growth rates (μ= 0.11–0.69 days?1) and silica cell quotas (Qsi= 0.13–2.40 pmoles Si · cell1). Scale morphology and the organization of the scale layer became increasingly aberrant as silica stress increased. Under severe stress, scale deposition was completely suppressed so that cells appeared scale-free. This depression of scale deposition was reversible; populations of silica-starved, scale-free cells rapidly regenerated new scale layers when placed in batch culture and spiked with dissolved silica. During recovery from silica stress, cell division was repressed for 24 h while mean cell silica quota increased 25-fold. The first new scales appeared within 2 h after the silica addition, and development of the new scale layer proceeded in an approximately synchronous manner, residting in normal scale layers on virtually all cells after 48 h of recovery in Sirich medium. Silica content of silica-replete Synura cells is comparable to freshwater diatoms of siynilar size, but Synura has much greater potential quota variability than diatoms and no apparent threshold silica requirement. Silica-limited growth kinetics and competition between diatoms and Synura for silica are discussed. The results suggest that morphological variability of siliceous scales in natural populations of synurophyte flagellates may result from silica stress and that the experimental approach developed here has great potential value as a means for circumscribing ecotypic variation in scale morphology. Results also demonstrate that scale production can be uncoupled from cell division, suggesting that cell cycle regulation of silica biomineralization in the Synurophyceae may be fundamentally different from that of diatoms (algal class Bacillariophyceae). This experimental system has application in the future study of the intracellular membrane systems and the regulatory processes involved in silica biomineralization.  相似文献   
50.
Motile unicells of Olisthodiscus lutheus Carter aggregated to form encapsulated masses of nonmotile cells in a benthic stage throughout a temerature range of 15–30°C at salinities o f 10–50%. Motile cells were released from beneathic masses at 10–30°C but at 5°C, cells were not motile and at 0°C cells lysed. Exposure of benthic masses of I day to 8 wk to temperatures of 0–30C in lighted growth chambers resulted in mortality to cells kept below 10°C and normal growth at higher temperatures. Benthic stage cells kept tn darkness at the same temperatures exhibited mortality in all but those at 5 and 10°C. Cells at these thmoeratures remained viable 15 wk in continual darkness. Comparison of cell morphology of matile and benthic stage O. luteus to other Olisthodiscus species and the ecological implications o fthe benthic stage are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号