首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2546篇
  免费   440篇
  国内免费   172篇
  2024年   14篇
  2023年   52篇
  2022年   85篇
  2021年   123篇
  2020年   122篇
  2019年   134篇
  2018年   112篇
  2017年   94篇
  2016年   92篇
  2015年   127篇
  2014年   202篇
  2013年   184篇
  2012年   161篇
  2011年   202篇
  2010年   118篇
  2009年   97篇
  2008年   135篇
  2007年   129篇
  2006年   112篇
  2005年   93篇
  2004年   86篇
  2003年   83篇
  2002年   61篇
  2001年   43篇
  2000年   42篇
  1999年   33篇
  1998年   44篇
  1997年   56篇
  1996年   24篇
  1995年   33篇
  1994年   47篇
  1993年   25篇
  1992年   31篇
  1991年   37篇
  1990年   22篇
  1989年   31篇
  1988年   13篇
  1987年   10篇
  1986年   13篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1982年   7篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
排序方式: 共有3158条查询结果,搜索用时 562 毫秒
981.
The hepatoprotective effect of birch bark extract (BBE) in patients with chronic hepatitis C (CHC) was studied. Forty-two patients with serologically confirmed chronic hepatitis C were treated for 12 weeks with 160 mg standardized BBE per day. The primary outcome parameter measured was the rate of alanine aminotransferase (ALT) normalization after 12 weeks. Secondary parameters included the course of ALT, aspartate aminotransferase (AST) levels, quantitative HCV RNA levels, subjective symptoms associated with CHC (fatigue, abdominal discomfort, depression, and dyspepsia), safety and compliance. The qualitative-quantitative analysis of BBE was made using high performance liquid chromatography to confirm the presence of 75% betulin and 3.5% betulinic acid. Significant differences in the mean ALT and HCV RNA levels were observed after 12 weeks of treatment. The level of ALT was decreased in 54.0% and normalized (p = 0.046). HCV RNA was reduced in 43.2% (p = 0.016). After 12 weeks of treatment, reports of fatigue and abdominal discomfort were reduced by 6-fold (p = 0.028) and 3-fold (p = 0.05), respectively. Dyspepsia was no longer reported (p = 0.042) and the effect was significantly different from baseline. Because this study lacks a control group clinical relevance of the data can only be estimated in future by following controlled clinical trials.  相似文献   
982.
A series of 2,4-diphenyl-1H-imidazole analogs have been synthesized and displayed potent human CB2 agonist activity. Many of these analogs showed high functional selectivity over human CB1 receptors. The syntheses, structure-activity relationships, and selected pharmacokinetic data of these analogs are described.  相似文献   
983.
Replacement of the benzimidazole core of allosteric Thumb Pocket 1 HCV NS5B finger loop inhibitors by more lipophilic indole derivatives provided up to 30-fold potency improvements in cell-based subgenomic replicon assays. Optimization of C-2 substitution on the indole core led to the identification of analogs with EC50 <100 nM and modulated the pharmacokinetic properties of the inhibitors based on preliminary data from in vitro ADME profiles and in vivo rat PK.  相似文献   
984.
Anti-HCV activity of aryl diketoacid (ADK) has been characterized by its two pharmacophoric elements, α,β-diketo acid moiety and substituted aryl ring. In this study, as a part of our ongoing efforts to discover a novel anti-HCV compound mimicking the ADK scaffold, we designed 2-arylmethylaminomethyl-5,6-dihydroxychromone derivatives of which the dihydroxychromone moiety as well as the arylmethylaminomethyl substituent (R-PhCH2NHCH2-) were anticipated in exact match with the pharmacophore model of the ADK. The dihydroxychromone derivatives (3a-3u), thus prepared, showed biological activity in a substituent-dependent fashion, thereby leading to selective anti-HCV effect (EC50 = 2.0-14.0 μM, CC50 >100 μM) with the substituent groups such as Cl, Br, I, and Me specifically at the 3-position of the aromatic ring.  相似文献   
985.
986.
Steatosis is a frequent complication of hepatitis C virus infection. In mice, this condition is recapitulated by the expression of a single viral protein, the nucleocapsid core. Core localizes to the surface of lipid droplets (LDs) in infected liver cells through a process dependent on host diacylglycerol acyltransferase 1 (DGAT1), an enzyme that synthesizes triglycerides in the endoplasmic reticulum. Whether DGAT1 also plays a role in core-induced steatosis is uncertain. Here, we show that mouse embryonic fibroblasts isolated from DGAT1(-/-) mice are protected from core-induced steatosis, as are livers of DGAT1(-/-) mice expressing core, demonstrating that the steatosis is DGAT1-dependent. Surprisingly, core expression did not increase DGAT1 activity or triglyceride synthesis, thus excluding the possibility that core activates DGAT1 to cause steatosis. Instead, we find that DGAT1-dependent localization of core to LDs is a prerequisite for the steatogenic properties of the core. Using biochemical and immunofluorescence microscopy techniques, we show that the turnover of lipids in core-coated droplets is decreased, providing a physiological mechanism for core-induced steatosis. Our results support a bipartite model in which core first requires DGAT1 to gain access to LDs, and then LD-localized core interferes with triglyceride turnover, thus stabilizing lipid droplets and leading to steatosis.  相似文献   
987.
Flavocytochrome b(558) (cytb) of phagocytes is a heterodimeric integral membrane protein composed of two subunits, p22(phox) and gp91(phox). The latter subunit, also known as Nox2, has a cytosolic C-terminal "dehydrogenase domain" containing FAD/NADPH-binding sites. The N-terminal half of Nox2 contains six predicted transmembrane α-helices coordinating two hemes. We studied the role of the second transmembrane α-helix, which contains a "hot spot" for mutations found in rare X(+) and X(-) chronic granulomatous disease. By site-directed mutagenesis and transfection in X-CGD PLB-985 cells, we examined the functional and structural impact of seven missense mutations affecting five residues. P56L and C59F mutations drastically influence the level of Nox2 expression indicating that these residues are important for the structural stability of Nox2. A53D, R54G, R54M, and R54S mutations do not affect spectral properties of oxidized/reduced cytb, oxidase complex assembly, FAD binding, nor iodonitrotetrazolium (INT) reductase (diaphorase) activity but inhibit superoxide production. This suggests that Ala-53 and Arg-54 are essential in control of electron transfer from FAD. Surprisingly, the A57E mutation partially inhibits FAD binding, diaphorase activity, and oxidase assembly and affects the affinity of immunopurified A57E cytochrome b(558) for p67(phox). By competition experiments, we demonstrated that the second transmembrane helix impacts on the function of the first intracytosolic B-loop in the control of diaphorase activity of Nox2. Finally, by comparing INT reductase activity of immunopurified mutated and wild type cytb under aerobiosis versus anaerobiosis, we showed that INT reduction reflects the electron transfer from NADPH to FAD only in the absence of superoxide production.  相似文献   
988.
Several conserved domains critical for E1E2 assembly and hepatitis C virus entry have been identified in E1 and E2 envelope glycoproteins. However, the role of less conserved domains involved in cross-talk between either glycoprotein must be defined to fully understand how E1E2 undergoes conformational changes during cell entry. To characterize such domains and to identify their functional partners, we analyzed a set of intergenotypic E1E2 heterodimers derived from E1 and E2 of different genotypes. The infectivity of virions indicated that Con1 E1 did not form functional heterodimers when associated with E2 from H77. Biochemical analyses demonstrated that the reduced infectivity was not related to alteration of conformation and incorporation of Con1 E1/H77 E2 heterodimers but rather to cell entry defects. Thus, we generated chimeric E1E2 glycoproteins by exchanging different domains of each protein in order to restore functional heterodimers. We found that both the ectodomain and transmembrane domain of E1 influenced infectivity. Site-directed mutagenesis highlighted the role of amino acids 359, 373, and 375 in transmembrane domain in entry. In addition, we identified one domain involved in entry within the N-terminal part of E1, and we isolated a motif at position 219 that is critical for H77 function. Interestingly, using additional chimeric E1E2 complexes harboring substitutions in this motif, we found that the transmembrane domain of E1 acts as a partner of this motif. Therefore, we characterized domains of E1 and E2 that have co-evolved inside a given genotype to optimize their interactions and allow efficient entry.  相似文献   
989.
Hepatitis C Virus (HCV) nonstructural 5A (NS5A) is a pleiotropic protein involved in viral RNA replication and modulation of the cellular physiology in HCV-infected cells. To elucidate the mechanisms of the HCV life cycle, we identified cellular factors interacting with the NS5A protein in HCV-infected cells. Huh7.5 cells were electroporated with HCV Jc1 RNA. Cellular factors associated with HCV NS5A were identified by immunoprecipitation with Dynabead-conjugated NS5A antibody and LC-MS/MS. Phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) was identified as a binding partner for the NS5A protein. NS5A derived from both genotypes 1b and 2a interacted with PI4KIIIα. NS5A interacted with PI4KIIIα through amino acids 401-600 of PI4KIIIα and domain I of NS5A. Interference of the protein interaction between NS5A and PI4KIIIα decreased HCV propagation. Knockdown of PI4KIIIα significantly reduced HCV replication in Huh7 cells harboring the subgenomic replicon and in Huh7.5 cells infected with cell culture grown virus (HCVcc). Silencing of PI4KIIIα further inhibited HCV release into the tissue culture medium. NS5A may recruit PI4KIIIα to the HCV RNA replication complex. These data suggest that PI4KIIIα is an essential host factor that supports HCV proliferation and therefore PI4KIIIα may be a legitimate target for anti-HCV therapy.  相似文献   
990.
CD81 is a tetraspanin protein that is involved in several essential cellular functions, as well as in the hepatitis C virus (HCV) infection. CD81 interacts with a high stoichiometry with its partner proteins EWI-2, EWI-2wint, and EWI-F. These latter proteins modify the functions of CD81 and can thereby potentially inhibit infection or modulate cell migration. Here, we characterized the cleavage of EWI-2 leading to the production of EWI-2wint, which has been shown to inhibit HCV infection. We determined the regions of EWI-2/EWI-2wint and CD81 that are important for their interaction and their functionality. More precisely, we identified a glycine zipper motif in the transmembrane domain of EWI-2/EWI-2wint that is essential for the interaction with CD81. In addition, we found that palmitoylation on two juxtamembranous cysteines in the cytosolic tail of EWI-2/EWI-2wint is required for their interaction with CD81 as well as with CD9, another tetraspanin. Thus, we have shown that palmitoylation of a tetraspanin partner protein can influence the interaction with a tetraspanin. We therefore propose that palmitoylation not only of tetraspanins, but also of their partner proteins is important in regulating the composition of complexes in tetraspanin networks. Finally, we identified the regions in CD81 that are necessary for its functionality in HCV entry and we demonstrated that EWI-2wint needs to interact with CD81 to exert its inhibitory effect on HCV infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号