首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15999篇
  免费   1511篇
  国内免费   679篇
  18189篇
  2024年   51篇
  2023年   292篇
  2022年   374篇
  2021年   614篇
  2020年   576篇
  2019年   556篇
  2018年   552篇
  2017年   507篇
  2016年   511篇
  2015年   651篇
  2014年   797篇
  2013年   899篇
  2012年   685篇
  2011年   597篇
  2010年   573篇
  2009年   759篇
  2008年   794篇
  2007年   815篇
  2006年   685篇
  2005年   636篇
  2004年   595篇
  2003年   596篇
  2002年   507篇
  2001年   415篇
  2000年   380篇
  1999年   358篇
  1998年   283篇
  1997年   273篇
  1996年   273篇
  1995年   237篇
  1994年   253篇
  1993年   251篇
  1992年   202篇
  1991年   180篇
  1990年   182篇
  1989年   172篇
  1988年   151篇
  1987年   134篇
  1986年   93篇
  1985年   118篇
  1984年   129篇
  1983年   72篇
  1982年   84篇
  1981年   92篇
  1980年   70篇
  1979年   49篇
  1978年   38篇
  1977年   38篇
  1976年   25篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Comparative studies provide correlational evidence of morphological adaptations for high locomotor performance, such as the classical indicators of cursoriality in mammals, long limbs and high metatarsal/femur ratios. More recently, enlarged femoral condyles have been suggested as an adaptation for high endurance running in the genus Homo. Asymmetry of locomotor appendages should adversely affect locomotor abilities, but this has not been studied in a rigorous evolutionary context. We used experimental evolution to test for morphological adaptations associated with high voluntary wheel running in selectively bred lines of mice. Surprisingly, the classical indicators of cursoriality had not evolved in concert with high activity levels. Instead, high runners had larger femoral condyles and reduced directional asymmetry of hindlimb bones. We hypothesize that greater limb symmetry and larger femoral heads are general adaptations associated with sustained, high-speed locomotion.  相似文献   
142.
Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate.  相似文献   
143.
The evolutionary relationships between three major components of Darwinian fitness, development rate, growth rate and preadult survival, were estimated using a comparison of 55 distinct populations ofDrosophila melanogaster variously selected for age-specific fertility, environmental-stress tolerance and accelerated development. Development rate displayed a strong net negative evolutionary correlation with weight at eclosion across all selection treatments, consistent with the existence of a size-versus-time tradeoff between these characters. However, within the data set, the magnitude of the evolutionary correlation depended upon the particular selection treatments contrasted. A previously proposed tradeoff between preadult viability and growth rate was apparent only under weak selection for juvenile fitness components. Direct selection for rapid development led to sharp reductions in both growth rates and viability. These data add to the mounting results from experimental evolution that illustrate the sensitivity of evolutionary correlations to (i) genotype-by-environment (G X E) interaction, (ii) complex functional-trait interactions, and (iii) character definition. Instability, disappearance and reversal of patterns of genetic covariation often occur over short evolutionary time frames and as the direct product of selection, rather than some stochastic process. We suggest that the functional architecture of fitness is a rapidly evolving matrix with reticulate properties, a matrix that we understand only poorly.  相似文献   
144.
Tetrastigma (Miq.) Planch. (Vitaceae) is a genus with ca. 100 species showing great morphological diversity. Previous molecular phylogenetic studies suggested that traditional classification systems are not consistent with the molecular phylogeny, and Tetrastigma is undergoing further systematic investigation. We traced the evolutionary trends of 20 morphological characters within a robust phylogenetic framework. Our results revealed that many morphological characters show either multiple transitions or few state changes, however, some characters show distinct variation. The two subgenera in Tetrastigma (subgen. Tetrastigma and subgen. Palmicirrata) based on unbranched/bifurcate versus digitately branched tendrils are not supported because subgen. Tetrastigma is paraphyletic. However, the unbranched versus bifurcate/digitately branched tendril is of taxonomic utility to characterize some of the major clades. Inflorescences in Tetrastigma appear axillary, but are leaf‐opposed on a compressed axillary shoot. We found most of the species in Tetrastigma retained the ancestral compound dichasial inflorescence, except those of clade IV that have derived pseudo‐umbellate inflorescences. Other characters including habit, leaf organization, and berry shape provide additional morphological support for the major clades. Our morphological analysis and recent molecular study suggest each of the five major clades within Tetrastigma be treated as distinct taxonomic sections (five sections in the genus).  相似文献   
145.
Pre-dispersal seed predation may have important effects on population dynamics and trait evolution in plants. In this review, we first present a conceptual framework of the strength of pre-dispersal seed predation and its variation in space and time. We consider the interaction between plants and their seed predators to be “strong” when it affects plant population dynamics or causes changes in plant trait–fitness relationships, and “weak” when it has no such effects, and propose ways of how to adequately assess these effects. Second, we review the ecological literature between 1991 and 2005 to evaluate documented effects of pre-dispersal seed predation on plants and draw five major conclusions. (1) Pre-dispersal seed predation rates are usually low but sometimes high, and show a considerable variation in space and time. (2) Direct evidence suggests that pre-dispersal seed predation can have a significant effect on recruitment and plant population growth rate. Accumulating evidence of seed-limited recruitment suggests that such effects are common. (3) Pre-dispersal seed predation affects selection on several plant traits, such as flowering phenology and flower number, which are usually interpreted mainly in the context of plant–pollinator interactions. (4) The patterns of variation in the interactions between plants and pre-dispersal seed predators suggest that geographic selection mosaics may be common. (5) Although there are numerous studies estimating seed predation, there are still rather few studies that have aimed at examining the interaction explicitly in terms of effects on plant population dynamics and trait selection. From these we know that seed predators can have important, and often variable, effects on plant population dynamics and trait evolution. However, it still remains to assess how important they are across study systems and relative to other aspects of the plant's biotic and abiotic environment.  相似文献   
146.
Adaptation of populations to new environments is frequently costly due to trade‐offs between life history traits, and consequently, parasites are expected to be locally adapted to sympatric hosts. Also, during adaptation to the host, an increase in parasite fitness could have direct consequences on its aggressiveness (i.e. the quantity of damages caused to the host by the virus). These two phenomena have been observed in the context of pathogen adaptation to host's qualitative and monogenic resistances. However, the ability of pathogens to adapt to quantitative polygenic plant resistances and the consequences of these potential adaptations on other pathogen life history traits remain to be evaluated. Potato virus Y and two pepper genotypes (one susceptible and one with quantitative resistance) were used, and experimental evolutions showed that adaptation to a quantitative resistance was possible and resulted in resistance breakdown. This adaptation was associated to a fitness cost on the susceptible cultivar, but had no consequence either in terms of aggressiveness, which could be explained by a high tolerance level, or in terms of aphid transmission efficiency. We concluded that quantitative resistances are not necessarily durable but management strategies mixing susceptible and resistant cultivars in space and/or in time should be useful to preserve their efficiency.  相似文献   
147.
Some major evolutionary theories predict a relationship between rates of proliferation of new species (species diversification) and rates of morphological divergence between them. However, this relationship has not been rigorously tested using phylogeny-based approaches. Here, we test this relationship with morphological and phylogenetic data from 190 species of plethodontid salamanders. Surprisingly, we find that rates of species diversification and morphological evolution are not significantly correlated, such that rapid diversification can occur with little morphological change, and vice versa. We also find that most clades have undergone remarkably similar patterns of morphological evolution (despite extensive sympatry) and that those relatively novel phenotypes are not associated with rapid diversification. Finally, we find a strong relationship between rates of size and shape evolution, which has not been previously tested.  相似文献   
148.
Theoretical analyses have reported that in most circumstances where natural selection favours reliance on social learning, conformity (positive frequency-dependent social learning) is also favoured. These findings suggest that much animal social learning should involve a copy-the-majority strategy, yet there is currently surprisingly little evidence for conformist learning among animals. Here, we investigate this possibility in the nine-spined stickleback (Pungitius pungitius) by manipulating the number of demonstrator fish at two feeders, one rich and one poor, during a demonstration phase and evaluating how this affects the likelihood that the focal fish copy the demonstrators'' apparent choices. As predicted, we observed a significantly increased level of copying with increasing numbers of demonstrators at the richer of the two feeders, with copying increasing disproportionately, rather than linearly, with the proportion of demonstrators at the rich foraging patch. Control conditions with non-feeding demonstrators showed that this was not simply the result of a preference for shoaling with larger groups, implying that nine-spined sticklebacks copy in a conformist manner.  相似文献   
149.
A leading hypothesis linking parasites to social evolution is that more genetically diverse social groups better resist parasites . Moreover, group diversity can encompass factors other than genetic variation that may also influence disease resistance. Here, we tested whether group diversity improved disease resistance in an ant species with natural variation in colony queen number. We formed experimental groups of workers and challenged them with the fungal parasite Metarhizium anisopliae . Workers originating from monogynous colonies (headed by a single queen and with low genetic diversity) had higher survival than workers originating from polygynous ones, both in uninfected groups and in groups challenged with M. anisopliae . However, an experimental increase of group diversity by mixing workers originating from monogynous colonies strongly increased the survival of workers challenged with M. anisopliae , whereas it tended to decrease their survival in absence of infection. This experiment suggests that group diversity, be it genetic or environmental, improves the mean resistance of group members to the fungal infection, probably through the sharing of physiological or behavioural defences.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号